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Executive Summary
This report introduces novel analysis techniques that have been developed in order to help a Distribution
Network Operator (DNO) gain an understanding of the risk of unacceptable thermal loading and voltage
excursions on their Low Voltage (LV) networks. The method accounts for both:

· The fundamental variability in  a  given  customer’s  demand  over  a  period  of  time,  which  is  only
partially predictable; as well as

· The significant uncertainty that DNOs are faced with when trying to model demand variability for a
network supplying multiple customers, who may use their electricity in very different ways.

The method is designed to incorporate network-specific demand data for refining estimates of customer
demand, as this becomes available, with particular attention given to smart meter data.

Motivation
With the exception of designing new connections, there has historically been little need to monitor or
model LV networks, which means that existing models and the data they require can be reasonably simple.
Like  the  other  DNOs  in  Great  Britain  (GB),  Northern  Powergrid  (NPg)  tend  to  use  one  of  two  existing
methods when estimating demands for LV networks:

· The ACE 49 method, developed in the 1970s and 1980s, which describes a simple statistical model
for understanding the demand for group of customers types that could be supplied from an LV
network. There are several strong assumptions made in order to derive this model, including the
definition of a 90th percentile level of risk. In addition, the detail and intent of some important
aspects of the method aren’t completely clear.

· The After Diversity Maximum Demand (ADMD) method, which generally refers to empirically
determined values of the per customer demand, for a group of ܰ customers. By definition, ADMDs
don’t relate to a level of network risk.

Both methods have shortcomings, and these are discussed in more detail in Section 2.2. One weakness of
both  methods  is  that,  in  their  typical  use,  they  assume  that  all  customers  of  a  specific  type  exhibit  the
“average” behaviour for that type of customer. Trial data shows that this is not the case when dealing with
small groups of customers. This is discussed in more detail in Section 2.2.3. Another is that power flows on
the network are often not studied, or are studied in a simplified way. DNOs have used these methods for
many years to provide customers with sufficient network capacity, which has helped to ensure that their
quality of supply is not compromised.

There is the potential for rapid increase of demand on LV networks, particularly due to customers adopting
Low Carbon Technologies (LCTs) in support of Government objectives for decarbonisation heat and
transport. In the future, these methods may cease to be suitable for designing efficient and secure LV
networks.

The roll-out of smart metering and LV monitoring could provide DNOs with a rich source of data to improve
their LV design practices. Enhanced design processes and methods are required in order to incorporate this
information and continue to design economically efficient networks.

Novel analysis techniques for LV design which utilise this richer data, like those presented here, are more
suitable for managing uncertainty about customer demands, and represent an evolution towards more
efficient risk-based network design methodology. Benefits would include:

· Improved business planning and more efficient investment programme for LV networks.

· Helping to inform the appropriate level of risk for networks.

· Improved understanding of the reduction in risk associated with network development.
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Overview of method
The foundational principles of the ACE49 method are still very appropriate for LV network planning. In
particular, the use of a statistical model to represent customer demands will continue to be appropriate,
particularly as the adoption of LCTs could lead to far more uncertain patterns of demand on the LV
network. Such a model allows the network to be thought about in terms of risk and uncertainty.

Our  novel  analysis  techniques  are  therefore  rooted  in  the  use  of  a  statistical  model  to  reflect  both  the
variability and uncertainty in  demand on LV networks.  More specifically,  we have proposed the use of  a
Bayesian statistical model for representing demand. Bayesian statistics are described in more detail in
Section 2.3, but the key points to note are:

· In Bayesian statistics, probabilities are viewed as representing subjective beliefs, rather than the
long-run frequency of some measured phenomenon. This is important when dealing with problems
for which there is not much data. Initial beliefs are formalised mathematically as ‘prior probability
distributions’.

· Our method proposes that prior probability distributions should be formed based on existing data
sets from projects such as NPg’s Customer Led Network Revolution (CLNR) project. Bayesian
statistics allows for the initial prior beliefs to reflect the uncertainty which exists when trying to
understand the demand for customers at the LV level, without specific local data.

· When data becomes available from smart meters or LV monitoring, it can be used to update the
‘prior’, according to a procedure known as Bayesian updating, to form a ‘posterior probability
distribution’. It is expected that this will reduce the uncertainty in the estimate.

· This procedure can be repeated indefinitely every time new data becomes available. Eventually, the
initial prior belief will have very little influence on the modelled demand.

Section 3.2 sets out how the Bayesian approach could be layered on top of the probabilistic model using
Gamma and Weibull distributions as described in the Smart Meter Data Analytics report.

Demonstration
Our method also captures the impacts which these demands will have on the network, in terms of thermal
utilisation and voltage excursion, to inform network planning and new connection designs, based on
detailed  AC  power  flow  modelling.  However,  rather  than  attempting  to  run  100,000s  of  AC  power  flow
simulations using Monte-Carlo sampling, we have proposed a method which decouples the AC power flow
modelling from the modelling of demand.

This is achieved by running large sets of customer demands through a network model, storing the outputs,
and then regressing the outputs of the AC load flow against the demand inputs. This would require
considerably fewer samples than a conventional Monte-Carlo AC load flow. This takes advantage of the fact
that, even though AC load-flow is non-linear, by observing the results for 1,000s of combinations of
demand, it should always be possible to estimate the results for all credible demands. For particularly
complex network, machine learning methods may be used to explore different regression models, although
these have not been demonstrated here.

These novel analysis techniques are demonstrated for two LV networks in Section 4. In the cases we have
looked at, it has been possible to account for the majority of network behaviour using simple single-
variable linear regressions. We have only done this for case studies that look at high demand, although this
could be easily extended to also look at low demand cases where there is embedded generation. We have
demonstrated how these techniques can be used to calculate risk-based “exceedance expectations” that
inform a network planner of the long-term frequency of voltage limit violations or thermal overloads.
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Key learning
Some of the key learning generated from the work is summarised below:

· Existing methods provide good foundations for LV network planning, and novel analysis techniques
can evolve these so that new sources of data can be leveraged to address emerging challenges. In
particular, the use of a statistical model, as within the ACE49 method, should be retained and
incrementally enhanced.

· An appropriate statistical model for describing customer demand on an LV network, in a situation
where there is limited data available to a network designer, has been developed and
demonstrated. Approaches for integrating new sources of data within this model, as these become
available, to help improve the precision of models have also been proposed.

· Even within a specifically defined customer type, there is still significant variability in the patterns
of demand. Therefore, the benefits of reflecting certain customer type categorisation, such as
MOSAIC, may not be justified, given the minor reduction in uncertainty.

· Variability and uncertainty should be propagated throughout the model, rather than just studying
the impacts on the network of “average” customer demands. A method for avoiding the need for
computationally expensive Monte-Carlo AC load flows has been demonstrated.

· The risk related to unacceptable thermal loading and voltage excursions is multi-faceted,
particularly because DNOs do not have access to high quality data about how their LV networks are
used. The method we proposed systematically accounts for multiple sources of risk, including the
fundamental and inherent variability in customer demand as well as the uncertainty that the DNO
is faced with due to lack of information.

Next steps
On the basis of the analysis presented in this report, it would be possible to construct a model which
calculates the risk for LV network thermal loading and voltage violations due to load, including both
generation and demand. Issues for near-term implementation will be considered in the project through
development of a functional specification. Implementation issues could include:

· Determining how DNOs should think about load related risk in their LV network planning

· Practical use of smart-meter data, given challenges such as data privacy and partial penetration of
smart-meters, although the fundamental options have already are been considered, and are
presented and discussed here in Section 5.1.2 and Section 5.1.3.

Further developments of the novel analysis techniques would be beneficial, including:

· Capturing the behaviour of Low Carbon Technologies and their interactions with existing demand,
when their penetration is much deeper than current levels.

· Improving predictions of “extreme” events, such as very infrequent demands, using a branch of
statistics called extreme value theory (although the current model does have this ability).

· Assessing more complicated meshed networks, or networks with lots of imbalance across phases,
which may require the use of multi-variate statistics.

We have described how the modelling methodology could address some of these implementation and
modelling challenges in Section 5.
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1 Introduction
With growing low carbon generation and demand and correspondingly more dynamic, controllable loads
on the LV network, and with the improved ability to monitor behaviour through smart meters coming in the
future, there is an increasing need to move towards a more sophisticated LV network modelling approach.
Integration  of  smart  meter  data  as  well  as  other  sources  of  typical  network  monitoring  data  e.g.  Elexon
Profile Class 5-8 customer data, with LV network modelling will provide significant value to LV network
planning.

The project  objective  is  to  explore how smart  metering data  in  combination with  other  sources  of  smart
monitoring and existing network data can be used to improve the planning and design of the distribution
network. This technical report forms part of the project and is focussed on development and
demonstration of novel network analysis techniques at LV, based on use of smart meter data.

1.1 Risk-based network planning
The current security of supply methodology ER P2/6 is deterministically applied and based on a single peak
demand rather than a statistical representation of peak demands. A capacity assessment then identifies
any areas where reinforcement is required based on the forecasted peak demand. In the context of energy
system changes, industry is now beginning to realise that implementing a more probabilistic methodology
has the potential to utilise existing capacity more effectively through better understanding and
characterisation of customer loading and how different types of distributed energy resources could
contribute to providing demand security. This prospect has been examined extensively in the ongoing
review of the ER P2 standard where the benefits and challenges of implementing more probabilistic supply
security assessment methodologies have been considered.

In the draft ER P2/7 security of supply document, emphasis is on defining the minimum level of security of
supply that should be achieved rather than how that level should be achieved.

1.1.1 Opportunities from new data sources
The increasing adoption of smart meters is providing a significant opportunity to collate and analyse data
on customer load characteristics, enabling more accurate characterisation of networks, and facilitating the
adoption of a robust probabilistic approach to network planning. There is also a wider application of
monitoring across distribution networks, including at low voltage, to facilitate greater understanding and
control of networks coupled with increased digitalisation of a wide range of geographic and demographic
data. This includes monitoring to enable a number of smart solutions such as active network management,
demand side response, voltage control and dynamic asset ratings. These data sources can all contribute to
an improved understanding of customer and network behaviour within a statistical framework albeit within
the constraints of customer privacy.

1.2 Summary of Approach
The approach that we have developed and present in further detail in this report is formulated based on
advanced statistical techniques that apply to both customer demand and corresponding network states. It
incorporates the following features:

· Sophisticated data-driven statistical modelling.
· Risk based – identifies demands that exceed circuit capacity, their impact and their frequency.
· Can extend to model patterns in simultaneous demands at multiple nodes, , for situations where

the state of a network component cannot be determined with sufficient accuracy by a single
aggregated demand e.g. because the network has a large non-domestic customer with an atypical
pattern of demand connected at the end of a feeder.
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· Takes particular care to ensure that the high and low extremes observed over multiple years are
accurately modelled.

· Dynamic and flexible, can be updated to incorporate new data, such as increasing availability of
smart meter data, and learning about new technologies and their uptake.

This approach will facilitate more efficient network planning in a changing energy system, maximising use
of increasingly granular customer and network monitoring data.

1.3 Objectives
The objectives of the novel network analysis techniques at LV are as follows:

· Develop a statistical LV network customer load model capable of incorporating smart meter data,
along with other data such as network monitoring and annual energy consumption values. It must
also include consideration of the future uptake of low carbon technology (LCT).

· Develop a computationally efficient method for combining the customer demand model with a
network model to obtain a probabilistic representation of network states.

· Develop a method that combines this probabilistic representation with rules1 set  by  DNO
managers to make automated decisions regarding network design or reinforcement requirements.

· Compare our method with existing methods, and demonstrate the core functionality of these
novel analysis techniques.

1 Although, determining what these rules should be is not in the scope of the project.
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2 Background
2.1 Existing NPg approach to LV network planning
Currently, LV network planning and design (including for new connections) is carried out using several
design tools across licence areas as summarised below:

· LV Design (DEBUT) (Northeast):  LV  Design  (DEBUT)  is  an  older  version  of  WINDEBUT  and  is  a
graphical and analytical tool for LV network study. It performs thermal, voltage drop, fault current
and earth fault loop impedance studies on the LV network, although in most use-cases these are
based on average or typical relationships rather than power flow analysis of specific circuits. The
user selects a customer type for each connection, along with either the customer’s annual energy
consumption – if available – or otherwise the average energy consumption for the customer type,
and this is translated into a peak demand value.
Whilst DEBUT includes a wide range of profiles for different customer types, in general, the DEBUT
method is used to represent the demand of domestic customers. However, using CLNR data, the
DEBUT customer related parameters have been extended to include EVs and heat pumps (but no
type of generation).

· Design Demand Calculator (DDC) (Northeast and Yorkshire): This Excel based tool provides the
Equivalent ADMD (kW) for any given LV feeder depending on the number of customers and the
type of load connected. Apart from normal domestic load, it also takes account of heat pumps and
electric  vehicle  loads.  Based  on  the  Equivalent  ADMD  (kW)  values,  the  DDC  calculates  the  total
design demand (i.e. total load) in kVA that any network asset, e.g. a supplying transformer will
have to supply. The DDC calculates the Equivalent ADMD (kW) values for four typical loads which
are  assumed  to  represent  the  majority  of  the  network  load  i.e.  General  Domestic  (GD)  with  no
electric heating, General Domestic (GD) with electric heating, GD with Heat pumps and GD with
Electric vehicles.

· Network Calculator Tool 3 ph (Excel Tool) (Northeast): This Excel based tool is primarily used for
motors (starting studies), welders fusing & flicker study. It provides guidance on the size of
fluctuating load that can be connected within the EREC P28 limits, loop impedance, voltage
fluctuation, fault current and fuse rating.

· LV Volt Regulation & Fault Level Calculator (Yorkshire): This Excel based in-house tool  calculates
the voltage drop, earth loop impedance, fault current and required fuse size.

2.2 Existing statistical approaches to network modelling
In this section, we examine in further detail the existing statistical modelling approaches which NPg use
when undertaking network planning, including:

· The model within DEBUT, which is based on the ACE 49 report, and
· The “After Diversity Maximum Demand” approach.

We then show some comparisons of the estimates produced by each approach against the underlying CLNR
data.

2.2.1 ACE49
Existing network planning, using the ACE49 method implemented in DEBUT, already incorporates a
statistical model, with the following features:

1. Type of distribution: During the central winter period (November to March), the demand (kW) on
an LV circuit with N customers for any individual half-hour fits a ‘normal’ distribution. This
distribution is characterised by its mean (G) and its standard deviation σ. Distributions such as
these are described in more detail in Section 2.3.
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The distribution parameters, namely the mean and standard deviation, are assumed to be unique
for each of the 48 half-hour periods within the daily cycle, often referred to in this report as the
time-of-day. For this reason, it is necessary to introduce a subscript to the notation, indicating the
time-of-day i.e. ,,௧ܩ ߰௧ .

2. Estimation of parameters: The parameters of this distribution (the mean and the standard
deviation) are assumed to depend linearly on annual energy consumption (kWh).

௧ܩ = ܰ × ܥ × ߰ீ,௧

௧ߪ = ܰ × ܥ × ߰ఙ,௧ × ඨߪଵଶ + ଶଶߪ +
ଷଶߪ

ܰ

N is the number of customers.

C is average annual energy consumption.

߰ீ,௧ and ߰ఙ,௧ are proportionality constants for each half-hour.

,ଵଶߪ ଶଶ, andߪ :ଷଶ are the variance components arising from different types of variabilityߪ ଵଶandߪ
ଶଶ are connected to variations that each customer experiences with 100% correlations, whileߪ ଷଶߪ
is associated with variability that is completely independent for each customer.

The standard describes how, from this model, the design demand for each half hour period can be
expressed in terms of customers’ annual energy consumption the number of customers ,ܥ ܰ,  a
“mean demand factor” ”and an “enhancement demand factor ,݌ .ݍ

3. Data sources: The parameters (and therefore, the distributions) that describe the demand are
calculated very infrequently based on single data sets. Our understanding is that p and q values
(see below) were initially produced in the late 1970s/early 1980s, based on winter demand data
observed sometime in the 1970s, and were updated in the mid-2010s, during the Customer Led
Network Revolution (CLNR) project.

4. Level of risk: The level of demand for which networks should be designed is calculated, based on
the maximum demand across all 48 distributions. This is the ‘design demand’, described as the level
of demand that has only a 10% chance of being exceeded, which is “taken as an acceptable risk”.  In
other words, actual demand will be less than the design demand for at least 90% of the time, which
for any normal distribution is given by:

௧ܦ = ௧ܩ + 1.28 × ௧ߪ ,

In terms of the parameters defined above, this is:

ܰ × ܥ × ቌ߰ீ,௧ + 1.28 × ߰ఙ,௧ × ඨߪଵଶ + ଶଶߪ +
ଷଶߪ

ܰ
ቍ

The design demand (for each half hour period) is then rephrased as:

௧ܦ = ܰ × ܥ × ൬݌௧ +
௧ݍ
√ܰ

൰

where is the “mean demand factor” and ݌ is the “enhancement demand factor”. After calculating each ݍ
௧ܦ , the design demand is set as the maximum value of ܦ ௧ܦ  across all times of day. Our understanding of
the intention of ACE49 is that p and q should be calculated empirically as parameters which provide the
best  fit  to  the  data,  rather  than  being  expressed  analytically.  However,  we  are  almost  certain  that  the
ACE49 approach simply takes p to be the mean demand per customer, while q is  the  mean  of  the  total
standard deviation per customer.
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The main features of this model are represented graphically in Figure 2-1.

Figure 2-1 Probabilistic distribution of demand in a given half hour within ACE49

One important thing to note is that, although this is a statistical model, the statistical treatment is focused
on the calculation of the design demand for the network via a deterministic process. Further, there is no
sophisticated consideration of the relationship between the design demand and the actual condition of the
network, namely power flow and voltage level. Statistical distributions for these network variables,
specifically calculated for the unique features on a specific LV network, could in principle, be derived from a
combination of the ACE49 demand model and a model of the network circuit. However, this is not a feature
of the ACE49 approach, since the report methodology pre-selects a 90% risk level for demand, rather than
some current or voltage level.

For  a  more  detailed  exposition  of  this  statistical  approach,  please  refer  to  the  report  “Review  of  the
Distribution Network Planning and Design Standards for the Future Low Carbon Electricity System”2 from
CLNR.

2.2.1.1 Previous challenges to ACE49
The CLNR report referred to above raises some interesting challenges to the method, including one on “the
basis of the statistical approach of the ACE49 standard”. We have reproduced below a quote from this
report, which will be explained in the subsequent paragraphs:

“There are a several issues associated with the statistical modelling assumptions underpinning
ACE49  which  should  be  resolved  in  order  to  give  the  maximum  degree  of  confidence  in  a
planning approach for integrating LCTs. Most fundamentally, while ACE49 specifies design
requirements in terms of a given percentile of a probability distribution, it does not specify
clearly the definition of the variable of whose distribution this percentile is taken. There are
also questions over the assumption of statistical independence between customers on a single
feeder where LCTs are significant (i.e. supply or demand from some technologies such as solar
PV may be highly correlated between properties). This report has concentrated on providing
new datasets for use within the existing standards; however, as penetrations of LCTs become
very high the issues raised in C63 should be addressed.”

We have emphasised a key statement – this refers to the fact that the ACE49 method appears to take the
90th percentile value of the probability distribution for the demand on a given half-hour and on a given day

2 http://www.networkrevolution.co.uk/wp-content/uploads/2014/12/ACE49-Report-1.1.pdf
3 This relates to notation used within the CLNR report to identify different aspects of the model to be researched.
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of the year as the design demand – i.e. the specific half hour that is used to establish the design demand.
However, our interpretation of the ACE49 report is that it aims to design for a level of demand that would
only have a 10% chance of being exceeded in a given winter.  If  so, it  should be taking the 90th percentile
value of the probability distribution for the maximum demand value that could occur at any time within the
central winter period. This would be equivalent to a 1-in-10-year demand event.

It  can  be  implied  from  the  ACE  49  standard  report  that  the  method  calculates  the  90th  percentile  of  48
modelled distributions, which are the distributions for the demand on some given (but unspecified)
weekday in the central winter period, during one of 48 time-of-day intervals of 30 minutes, e.g. 4pm –
4:30pm  or  6:30pm  –  7:00pm.  It  then  takes  the  largest  of  these  distribution  percentiles  to  be  the  design
demand. In reality, there are only 2 or 3 possible candidate half-hours (at most) that could plausibly be the
time of day with the maximum 90th quantile of demand, but the largest among these generally changes for
different customer numbers, ܰ. This is significantly different from the 90th percentile of the maximum
demand that could occur throughout the winter period.

To elaborate, although the ACE49 design demand will only be reached or exceeded 10% of the time during
any single instance of the peak half-hour in winter, over the course of an entire winter, this level of demand
is almost certain to be equalled or exceeded, most likely with a frequency of 1-in-10 days in the long-run.
This is contradictory to the intention of the standard, which says that “a 90% probability of meeting the
demand within the design voltage regulation was taken as an acceptable risk”.

If, for example, a winter contains 90 working days, and we can assume for simplicity that the maximum
demand could only occur between 4pm and 7pm4, and - again temporarily, for convenience - that the
demand distributions for those periods are identical, then this distribution is sampled 540 times in one
winter. Calculating the maximum of these 540 samples is conceptually similar to tossing a coin multiple
times and calculating the probability that at least one coin-toss comes up with a result of ‘heads’5. After ݊
coin tosses, the probability that at least one of the results in a ‘head” is (1 − 50%)௡ . Even with a relatively
small number of tosses, this becomes a near certainty – e.g. after 7coin tosses, the probability that none of
them  returned  a  result  of  ‘heads’  is  only  0.8%.  (In  case  the  reader  is  concerned  that  the  variability  in
demand around its mean values do not share the statistical independence of coin tosses, be assured that
we are concerned with calculating the demand level that will be exceeded on average once every 10 years,
and such correlations may be ignored in the calculation of averages)

This is illustrated in Figure 2-2, for individual events which only occur 10%, 1% and 0.5% of the time
respectively.  This  shows  that  an  event  which  will  occur  only  10%  of  the  time  is  almost  certain  to  occur
(99.82% probability) if the observation is repeated only 60 times. For the statistical model, this means that
the design demand (which is set at the 90th percentile  level  of  the  demand  at  a  specific  time)  is  almost
certain  to  occur  within  any  two-week  period  of  winter.  (This  involves  a  10%  probability  of  the  design
demand being exceeded observed on a given time-step, repeated over 14 days of 6 measurements
between 4pm and 7pm)

To get a design demand which is, as desired, only 90% certain to be equalled or exceeded over an entire
winter, the percentile for the individual time-of-day distributions would have to be close to the 99.5th

percentile (i.e. a level of demand which, in any individual half-hour only has a 0.5% chance of occurring).

4 We have assumed for simplicity that these events have the same distribution. It would be possible to repeat these
calculations exactly using the underlying distributions.
5 In practice, unlike concurrent tosses of a coin, where the outcomes are independent of each other, the demand in
any give half-hour is likely to depend on the demand in the previous half-hour. We have ignored this effect for the
purposes of this illustrative example. This can be justified by recalling that we are ultimately concerned with the mean
frequency with which some demand level is exceeded, and correlations do not affect such mean values.
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This analysis offers a compelling explanation why the ACE49 method systematically underestimates the
observed customer demand for small numbers of customers (ܰ),  as  highlighted  in  the  NPg  Code  of
Practice6. For larger ܰ,  the spread of  the distribution become smaller  relative  to  their  mean values,  and
thus the extent of the error introduced by the misconception regarding distribution quantiles diminishes.
This is because of diversity, i.e. fluctuations in the peak demand decreases with larger customer numbers,
because customers switch appliances on and off at different times.

The design demands produced by ACE49 are compared to observed demand values from the CLNR datasets
in Section 2.2.3.

Figure 2-2  Probability of at least 1 occurrence given repeated trials of a random variable

2.2.2 After Diversity Maximum Demand
The alternative popular approach to modelling aggregate demand is called the After-Diversity Maximum
Demand (ADMD) approach. This is an entirely empirical yet deterministic approach, concerned with the
maximum value of aggregated demand that is observed within a relatively large sample of a historical series
– normalised by the number of customers in the aggregation group. More specifically, the method is
concerned with fitting an analytical function to the rate at which the normalised peak demand diminishes
as the number of customers in the group increases. The maxima can  relate to a series of aggregated
demands that were in fact witnessed on a real network, or an artificial aggregation of true and concurrent
historical series that happened to occur on distinct and widely separated networks.

This approach and the associated metric are not truly risk-based, since they involve only a single
observation  of  a  derived  random  variable:  i.e.  the  maximum  demand  experienced  over  1  year,  or  some
small number of years, for some combination of customers.

Some risk-based alternatives to this metric would be the expected value of the maximum observed out-turn
over several years e.g. 1 in 2.5 years in the case of CLNR data, or e.g. the yearly maxima that have a 10%
chance of being exceeded. Of course, ADMD values remain useful, e.g. ADMD values calculated from CLNR
data serving as good proxies for the expected value of 1-in-2.5 years maxima for that dataset. However, the
quality of the match is dependent on the quality of the deterministic modelling of the maximum observed
demand for a given group size.

6 IMP/001/911 Code of Practice for the Economic Development of the LV System, June 2018.
https://www.northernpowergrid.com/asset/0/document/109.pdf
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2.2.3 ACE49 and ADMD comparisons
This section examines the extent to which the ACE49 and ADMD approaches represent domestic customer
aggregated peak demands, for the parameter values adopted by Northern Powergrid (in their application of
ACE49 and ADMD), as established by studies conducted and published as part of the CNLR project, and
naturally using the CLNR (TC1a) dataset. We have conducted an experiment whereby we simulated the
aggregated demand series of 200 networks, or part of a network, with ܰ domestic customers (i.e. General
domestic customers with no electric heating). To achieve this, we randomly selected a group of customer
profiles from those available in CLNR, and then calculated the total demand of this group. We have done
this for groups of varying sizes, ranging from 1 to 120 customers, using smaller increments at the smaller
end of the range.

Alongside this, we have calculated the design demand which would be provided for the same values of ܰ
by the ACE49 and ADMD methods as described in accordance with the NPg LV Design Code of Practice. The
results of these trials are shown in Figure 2-3. The blue line indicates the mean result of the 200 “trials” for
each value of ܰ,  with a range showing the 10th and 90th percentile values across those trials. The orange
line shows the demand that would be produced using the ACE49 method, using the updated and ݌ values ݍ
and the annual consumption for a URMC customer. The grey line shows the demand that would be
produced by the ADMD approach, using the values from the LV Design Code of Practice.

The following observations are made based on these trials:

· ACE49 consistently underestimates demand for smaller values of N, whereas ADMD consistently
overestimates it for all values of N.

· ACE49’s underestimation is more pronounced for smaller group sizes. For larger N, the trial sample
and the ACE49 design demand converge at approximately 1 kW per customer. ADMD, on the
other, converges to a figure of approximately 2.1 kW per customer7.

· There is significant variation in the peak demand produced by different groups of customers,
especially for small values of N. Neither the ACE49 approach nor the ADMD approach account for
this variation.

Figure 2-4 further demonstrates this variability, and how it diminishes for aggregated series involving
increasing values of N. Specifically, it shows the decrease in the standard deviation of the 200 individual
group maximum demand values per customer, normalised by their mean demand.

7 Note that the LV Design Code of Practice quotes ADMDs in terms of the marginal ADMD of the nth customers. The
additional ADMD imposed by the 100th customer is 1.7 kW, lower than the average ADMD of all 100 customers which
is 2.1 kW.
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Figure 2-3 CLNR Trial Demand Values vs ACE49 and ADMD representations, for 1 to 120 customers

Figure 2-4  Standard deviation of series maxima as a proportion of the mean, for different customer
numbers
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2.3 Bayesian statistics
Much of our method is based on an approach to statistics known as ‘Bayesian’ statistics, and in particular
‘Bayesian inference’. Although routinely used in a wide variety of real-world applications, its use may
present the novice user with some challenges, due to the requirement of thinking about the fundamental
nature of probabilities and samples in a slightly new way. To aid understanding of the method, this section
provides an overview of these concepts, starting with a brief introduction of Bayes’ Theorem.

2.3.1 Bayes’ Theorem
Named after an 18th century statistician, Bayes’ theorem describes the relationship between different
conditional probabilities. The theorem is often expressed as follows:

(ܤ	|	ܣ)ܲ =
(ܣ)ܲ	(ܣ	|	ܤ)ܲ

(ܤ)ܲ

where A and B are events, ܲ(	) is a probability of an event occurring, and the symbol | implies the
probability of one event occurring, conditional on another event having occurred. For example, is (ܣ	|	ܤ)ܲ
the probability of event B happening, given that A is true (i.e. ‘has already happened’).

Consider, as an example, that is a randomly selected person in the world being Scottish, and ܣ is ܤ  a
randomly selected person in the world having ginger hair. Since about 1% of the world’s population has
ginger  hair,  we  may  express  this  as (ܤ)ܲ = 0.01, and given Scotland’s population of about 5.4 million
compared to the world population of around 7.5 billion, we have (ܣ)ܲ = 0.0007 or  0.07%.  As  anyone
who’s visited Scotland knows, the proportion of red-heads is higher than 1%, with some estimates being
10%, which means in this case that (ܣ	|	ܤ)ܲ = 0.1. An interesting question that arises is: if you know that
someone has ginger hair, how does this change the probability that they’re Scottish? Instinctively it is clear
that the probability is somewhat increased, i.e. (ܤ	|	ܣ)ܲ > ,(ܣ)ܲ	  and  Bayes’  Theorem  tells  you  how  to
calculate this using the other information available. In this case, the probability that a person is Scottish,
given they have ginger hair, is

(ݎℎܽ݅	ݎ݁݃݊݅ܩ	|	ℎݏ݅ݐݐ݋ܿܵ)ܲ =
(ℎݏ݅ݐݐ݋ܿܵ)ܲ	(ℎݏ݅ݐݐ݋ܿܵ	|	ݎℎܽ݅	ݎ݁݃݊݅ܩ)ܲ

(ݎ݅ܽܪ	ݎ݁݃݊݅ܩ)ܲ
=

0.1 × 0.0007
0.01

= 0.007

or 0.7%, meaning that if someone has ginger hair, we should believe it is more likely that they are Scottish.
As a further example, consider an application of medical diagnosis of a disease. Although possible to test
patients for the disease, there is always a risk of “false positive” and “false negative” result, so a positive
result does not necessarily mean someone has the disease or vice versa. Bayes Theorem’ allows for a
quantification of how likely the patient is to actually have a disease, dependent on their test results.

In this example, is the event that the patient has the disease, and ܣ is the event that the patient tests ܤ
positive for the disease. For simplicity, assume that there is only a 1% rate of false positive and false
negative  results,  and  that  the  overall  rate  of  occurrence  of  the  disease  in  the  population  is  0.5%.  That
means:

· The probability of having the disease (before the test) is (ܣ)ܲ = 0.005, while the probability of not
having the disease is (ܣ	ݐ݋݊	)ܲ = 0.995.

· The  probability  of  testing  positive  for  the  disease  among  those  who  truly  have  it  is (ܣ	|	ܤ)ܲ =
0.99.

· The probability of testing positive despite not having the disease is (ܣ	ݐ݋݊	|	ܤ)ܲ = 0.01
· The total probability of the test result being positive, is given by the (probabilistically) ,(ܤ)ܲ

weighted average of the two conditional probabilities and ,(ܣ	|	ܤ)ܲ .i.e ,(ܣ	ݐ݋݊	|	ܤ)ܲ

(ܤ)ܲ = (ܣ	|	ܤ)ܲ 	× (ܣ)ܲ	 	+ (ܣ	ݐ݋݊	|	ܤ)ܲ	 	× (ܣ	ݐ݋݊	)ܲ	
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(ܤ)ܲ = (0.99 ∗ 0.005) + (0.01 ∗ 0.995) = 0.0149

· From Bayes’ Theorem, we have that:
(ܤ|ܣ)ܲ = ௉(஻	|	஺)	௉(஺)

௉(஻)
= 	0.99 ∗ ଴.଴଴ହ

଴.଴ଵସଽ
= 0.3322

In other words, even though the test is quite accurate, the probability that the recipient of a single positive
test result actually has the disease is only 33% - reflecting the fact that a false positive is more likely than a
true positive, due to the prevalence of the disease. If we only expect 1 in 200 people to have the disease,
and we know that the disease gives a false result 1 out of 100 times, then it is difficult to say with much
certainty whether we have the disease on the basis of 1 test. The analysis used here has accurately
accounted for our prior knowledge of the probability of occurrence of the disease.

One way to address this uncertainly would be to complete a second test. Applying Bayes’ theorem again,
we have:

· and (ܣ|ܤ)ܲ .must be the same as previously, as they are inherent to the test (ܣ	ݐ݋݊|ܤ)ܲ
· The positive result has updated our prior knowledge, .from 0.005 to 0.33 (ܣ)ܲ
· This means that (ܤ)ܲ = (0.99 ∗ 0.33) + (0.01 ∗ 0.67) = 0.3334
· Applying Bayes’ Theorem, we have that

(ܤ|ܣ)ܲ = 0.99 ∗
0.3322
0.3334

= 0.9864

This  result  reflects  the  fact  that  the  probability  of  a  true  positive  result  is  considerably  smaller  than  two
false positives, and thus the test recipient almost certainly has the disease. This process can be repeated
many times, with our prior knowledge being updated as more data becomes available.

2.3.2 Bayesian inference
Bayes Theorem has applications in many different areas of statistics, including more conventional
“frequentist” statistical methods, in which probabilities are treated as the long-run frequencies of the
occurrence of events. However, there is a separate branch of statistics known as Bayesian statistics which
makes use of an approach known as Bayesian inference. Bayesian inference uses Bayes’ theorem along
with a slightly different view of probability in order to make predictions which account for uncertainty.
Rather than viewing probabilities as long run frequencies of a phenomenon, the Bayesian approach to
statistical inference holds that all probabilities are subjective, and are a means of quantifying a degree of
belief about phenomena. As a result, any belief that is uncertain – which includes a state of knowledge
about the material world - is treated as a random variable.

For example, an experimenter might be interested in statistically modelling the height of children within a
school class. Both the Bayesian inference approach and the more ‘regular’ approach to inference (i.e.
learning) would consider the height of an individual child as a random variable, drawn from some
probability distribution, most likely a normal distribution.

The more common (frequentist) view is that the distribution of children’s height has some fixed set of
parameters that is initially unknown. The more children are available for measuring, the closer the
statistician is able to get to the true value of the parameters. The mean height for a specific classroom is a
random variable, but there is assumed to be a true population mean (essentially the mean for all children in
the world) that is not random. The Bayesian view, however, is that both the children’s height and the
parameters of the associated distribution are random variables. Further, both the mean height for a single
classroom and for ‘all children in the world’ are random.
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A reasonable approach to Bayesian inference would be for the statistician to take as their prior belief a
distribution of heights for children of the same age and from the same country reported in some reputable
source. The prior distribution would however be updated by the evidence specific to that class, i.e. the set
of measured children’s heights, with probability density functions (PDFs) – i.e. mathematical functions
providing the probability that an observation falls within a certain range - being subject to Bayesian
updating in exactly the same way that the probabilities of discrete events and ܣ were updated in the ܤ
previous section.

In equation form, we may substitute in Bayes’ theorem the event probabilities ܲ() with PDFs the event ,()݌
with our ܣ prior belief about the distribution of heights (e.g. the mean and standard deviation of the
normal distribution), and the event with ܤ  the  evidence  that  has  become  available  –  i.e.  the  height
observations gathered, to get:

(݁ܿ݊݁݀݅ݒܧ	|	݂݈݁݅݁ܤ)݌ =
(݂݈݁݅݁ܤ)݌	(݂݈݁݅݁ܤ	|	݁ܿ݊݁݀݅ݒܧ)݌

(݁ܿ݊݁݀݅ݒܧ)݌

· The PDF of the belief, is called the “prior” distribution ,(݂݈݁݅݁ܤ)݌
· The PDF of the belief after incorporating the evidence, ,(݁ܿ݊݁݀݅ݒܧ	|	݂݈݁݅݁ܤ)݌  is  called  the

“posterior” distribution
· The function is the probability of observing the evidence, given some prior (݂݈݁݅݁ܤ	|	݁ܿ݊݁݀݅ݒܧ)݌

belief – e.g. some pair of mean and standard deviation values for our example. It describes how
compatible the evidence is with any given prior belief. This is often referred to as the “likelihood”
or “sample”.

· The probability of the evidence taken as a weighted average over all possible parameter value
combinations is the “marginal” distribution of evidence, .(݁ܿ݊݁݀݅ݒܧ)݌

As in the example of the medical test, prior distributions can repeatedly be updated based on new sources
of evidence – the previous “posterior” belief becomes the new “prior” belief with each new update.

Figure 2-5 shows how a prior belief and the likelihood function associated with some evidence can be
combined to form a posterior distribution.

Figure 2-5 Bayesian inference example

By adopting Bayesian inference, we essentially introduce a ‘hierarchy’ into our treatment of uncertainty. As
previously stated, the probability distribution of the data is still dependent on some set of parameters (such
as the mean and standard deviation) with the full set often denoted by the single mathematical symbol θ.
However,  we reflect  the uncertainty  in  our  belief  by  treating these parameters  as  a  collection of  random
variables, themselves drawn from a distribution with its own set of ‘hyper-parameters’ represented by the
single mathematical symbol α.
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Indeed, the probability distributions in Figure 2-5 are actually distributions of the parameter values ,ߠ
(which we assume for convenience consists of only one random variable), rather than the directly
observable random variables, i.e. customer demands in the present context. In the figure, we have a prior
distribution for where the most likely values for the parameter are lower than the values most consistent ߠ
with the evidence. Our initial level of certainty about the parameter value was low, and so the distribution
has a relatively high variance. After observing some evidence with a relatively narrow likelihood function, a
posterior distribution is formed with a peak that lies between the prior and the evidence likelihood peaks.
As new evidence is incorporated, the posterior distribution will ‘narrow’, until we reach a point where we
have a very thorough understanding of the phenomena.

This is illustrated in Figure 2-6 – the previous “posterior” forms an updated prior belief, and additional
evidence causes the posterior to shift further.

Figure 2-6 Bayesian inference example with updated prior distribution

Recalling the example of the medical test, one of the quantities involved was the marginal ,(ܤ)ܲ
probability of the test outcome being positive, which was the probability-weighted sum of conditional
outcomes over all possible outcomes of which in this case were two outcomes: the test recipient having – ܣ
the disease and not having the disease. In the case of customer demand for energy, if we are interested in
e.g. the demand level that has a 1% chance of being exceeded, then the answer is generally determined by
the values of the set In order to get a marginal value, i.e. a value not dependent on a particular out-turn .ߠ
of the random it is similarly necessary to take a weighted sum over all possible outcomes for ,ߠ ,However .ߠ
in the new example there are in fact an infinite number of possible values for -and so the probability ,ߠ
weighted sum becomes an integration (in the calculus sense).

By expressing prior beliefs probabilistically, uncertainty about this belief can be robustly quantified. This is
particularly useful when dealing with small samples of data. It also formalises, within a mathematical
framework, the processes by which people naturally incorporate their existing subjective views of the
world. For example, if a network planner has a strong prior knowledge of a customer’s demand which is
incompatible with what some smart meter data says, Bayesian inference allows them to incorporate both
pieces of information into their assessment, rather than just being forced to discard one of these pieces of
information. For the same reasons, it is also very effective at dealing with outliers in data.

Our method, essentially, uses Bayesian inference as the means of estimating the parameters of the
probability distributions which describe demand, in a manner which incorporates the (potentially
significant) uncertainties associated with this. This is in contrast to ACE49, where parameters are estimated
using a very simple deterministic assumed relationship between instantaneous demand and annual energy
consumption. The model is explained in more detail in Section 3.2.
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2.3.2.1 Bayesian inference example – tossing a coin
The usefulness of Bayesian inference is best further illustrated through an example. A common example is
tossing a coin: if you only make a small number of coin tosses, what would you assume about the “fairness”
of the coin?

For example, imagine picking up a random coin and tossing it five times, resulting in four ‘heads’ and one
‘tail’. Traditional (also known as frequentist) statistics would estimate that the coin has an 80% chance of
returning a value of heads, but that the sample size of the experiment is too small to state this with much
confidence.  However,  this  is  not  the  conclusion  that  most  people  would  be  likely  to  draw  -  they  would
probably  still  assume  that  the  coin  was  largely  fair  (i.e.  that  it  has  an  approximately  equal  chance  of
resulting heads and tails). That’s because people have a strong ‘prior’ belief about what the results of a coin
toss  is  likely  to  be.  As  a  result,  a  frequentist  statistician  might  take  the  coin  being  fair  as  their  null
hypothesis (i.e. original view of the world), and calculate the extent to which the data forces them to reject
that hypothesis.

In Bayesian statistics, such prior beliefs are incorporated in a more integral way, as prior distributions. The
prior distribution of the coin’s fairness (as defined by its hyper-parameters) will be closely centred around
50%, with a very small variation – this variation might be because people know that coins are not always
perfectly fair due to minting imperfections, or that there are some trick coins in the world. Therefore, our
posterior  view of  the fairness  of  the coin  would not  change much,  at  least,  not  until  there were a  much
larger number of samples (evidence) suggesting the coin wasn’t fair.

2.3.3 Bayesian prediction
It  is  important  to  emphasise  again  that  the  curves  in  figures  2-6  and  2-7  are  the  prior  and  posterior
distributions of one of the parameters that define the probability distribution of the observable random
variable. In our school class example, the observable quantity is the height of any child within the class,
which we assume has a normal distribution. Therefore, the figures could represent the pdf of either the
mean or the standard deviation of children’s heights (both are random parameters and the same updating
process occurs for both).

The natural question that arises is: how can I use these parameter distributions to make predictions about
the height of an individual child – or whatever the observable variable may be. In Bayesian statistics, all
statements and predictions we can make about the observable variable are encapsulated by a pdf known
as the variable’s ‘predictive distribution’. More specifically, before the parameter distributions are updated
due to the arrival of new data, the observable variable is represented by the predictive prior distribution,
and after the arrival of data it is updated to become the predictive  posterior distribution. The mathematics
behind this are presented in the mathematical appendix.

The predictive distributions allow the modeller to make statements such as: “there is a 99% chance that a
randomly selected child within the class is taller than ,”ݔ  or  “there’s  a  50%  chance  that  the  height  of  a
randomly selected child within the class is within the range ܽ to ܾ”, or a simpler ‘point forecast’ such as
“the predicted height of a randomly selected child within the class is ℎ”. The precise predictive distributions
are  obtained  from  the  assumed  distribution  of  the  data,  combined  with  a  process  of  taking  a
probabilistically weighted mean across all possible values of the parameters – known as ‘marginalising’
over  those  parameters.  This  process  takes  full  and  rigorous  account  of  all  model  uncertainty,  while  very
conveniently producing single-valued answers to questions such as ‘what is the height that has only a 10%
change of being exceeded by a randomly selected child in the class.

Considering the example of the coin, the frequentist predictive distribution for a new coin toss, given the
results  of  the  previous  5,  would  be  a  probability  of  0.8  of  getting  a  ‘heads’  (i.e.  80%  chance)  and  a
probability of 0.2 of getting a ‘tail’, by following the default method known as ‘maximum likelihood
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estimation’. However, the frequentist statistician could alternatively test whether the data is sufficient to
reject their null hypothesis of a fair coin at a confidence level of 95%, would find that the answer is no, and
their predictive distribution would be a probability of 0.5 for both outcomes. A Bayesian statistician,
assuming that they choose their prior well, would derive a predictive distribution with e.g. a probability of
0.52 of getting a ‘heads’ and 0.48 of getting a ‘tail’. After many 1000s of coin tosses, both the frequentist
and Bayesian statisticians would derive predictive distributions that are extremely close to a probability of
0.5 for both outcomes.

Bringing  consideration  back  to  LV  networks,  the  Bayesian  methodology  allows  the  following  types  of
statements  to  be  made:  “for  a  randomly  selected  LV  network  feeder  with  50  domestic  customers,  3  of
which have EVs and 3 of which have heat pumps, the level of aggregated demand that has a 10% chance of
being exceeded between 5:30pm and 6:00pm on a randomly selected day in winter is ݀”. Through further
calculations,  we  can  extend  the  statements  that  can  be  made  to  the  following  type:  “for  a  randomly
selected LV network feeder  with  50 domestic  customers,  3  of  which have EVs and 3  of  which have heat
pumps, the level of aggregated demand that will be exceeded, on average, only once every 10 years is  ”.

The mathematics associated with producing posterior predictive distributions can be very challenging, or
even impossible to solve numerically. Fortunately, sampling techniques can be used as computationally
very cheap and intuitive alternatives, and the use of such methods will be presented in the case study
section of this report. These have the additional benefit of illustrating the uncertainty in demand, and how
this can change when new data is incorporated.

2.3.4 The opportunities for applying Bayesian inference to electricity demand
modelling
Fundamentally, there are practical limits on the extent to which we can anticipate customer behaviour and
their demands for electricity. For example, even if we had a very thorough understanding of all of the
customers on a network, we would not be able to pinpoint the exact times of the day at which they might
boil their kettles. That is, there is significant inherent randomness in how a customer uses electricity, which
is still present even if we have a very full understanding of how that customer’s characteristics drive that
usage.

In the ACE 49 approach, that inherent randomness is captured by considering a probability distribution for
how  that  specific  customer  will  behave.  This  is  illustrated  in  Figure  2-7  which  show  two  examples  of
probability distributions – a ‘normal’ distribution. This distribution is characterised by:

· The expected value, μ, of the distribution8

· The standard deviation, σ, of the distribution (which describes the variance i.e. the extent to which
values vary around the mean)

For example, there may be a category of customers whose demand, for a particular season/time-of-day,
can be represented by a distribution with a mean of μ1 and a standard deviation of σ1, whereas another
category of customer or the same customer at another season/time-of-day of would be represented by a
distribution with a mean of μ2 and a standard deviation of σ2.

8 Expected value and mean are used somewhat interchangeably – however, strictly speaking, a distribution has an
expected value, whereas a sample has a mean.
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Figure 2-7 Example of different normal distributions

The parameters which define a distribution are often referred to as the parameter set, and represented by
θ. In the ACE49 approach, the parameter sets are 48 values of p and q, the annual energy consumption C,
and the number of customers N, which are related analytically to the mean and standard deviation of a
normal distribution.

If the characterisation of a group of customers were complete, the inherently random nature of demand
means that  the demands they place on a  network at  a  specific  time still  cannot  be completely  predicted
with 100% certainty – put precise probabilities can be associated with those demands exceeding some
threshold or being within some range.

However, when the characterisation of the customers is incomplete, then even these probabilities may
have considerable uncertainty associated with them9. There is always going to be some incompleteness in a
network operator’s  characterisation of  the customers  on its  network,  due to  the very  partial  information
available.

Our analysis has demonstrated that this is certainly the case if characterising customers according to
Mosaic categories, where the variability in statistics such as average demand observed within each
category is roughly an order of magnitude greater than the variability between the average demand
observed in different MOSAIC categories. There could also be uncertainty in the data which enables
categorisation – for example, a DNO may be reasonably sure that a specific customer is of Category A, but
depending on the data that is used to inform this, there may still be a chance that they are actually part of
another category.

We believe that the only robust way to deal with this uncertainty is to explicitly acknowledge that, for any
instance of a group of customers, there is significant uncertainty about the parameters that define the
probability distribution of their combined demand. So, for a normal distribution, the mean μ1 and standard
deviation  of  σ1 are themselves only one set of possible values from distributions. The mean μ1 might
actually be characterised by its own distribution, which has a mean μμ1 and a standard deviation σ μ1, and
the standard deviation σ1 might actually be characterised by a distribution which has a mean μ σ 1 and a
standard deviation σ σ 1. This is represented in Figure 2-8, which shows a distribution created from the
distributions of each of the two values in the parameter set.

9 This is illustrated in Fig 2.3 by the variations in the average demand derived from the CLNR data.
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Figure 2-8 Example of generating parameters of a distribution from underlying distributions

This  is  a  clearly  an example which is  well  suited to  the application of  Bayesian Inference –  this  approach
reflects that different types of uncertainty exist at different levels, and seeks to explicitly account for this.
When using smart meter data sources (e.g. SMETS 2), this would be extended further so that the original
understanding of these parameters (the ’priors’) is periodically updated to produce new parameters, based
on a regular review of smart meter data. Bayes Theorem is used to update these prior beliefs about
probabilities based on new data.

The approach means we don’t have to pretend that we know exactly what the demand distribution
parameters are, when there is in fact considerable uncertainty, without compromising our ability to run
accurate calculations.

2.4 Probabilistic network condition
In order to better understand the risk associated with different network states, it will be necessary to apply
some sort of probabilistic approach to the modelling of the network condition, integrating the probabilistic
model  of  demand.  This  is  in  contrast  to  the  approaches  generally  taken  now,  which  just  look  at  a  single
snapshot of demand (and possibly generation), based on the ‘design demand’ or measured existing
demand where it is available, and assess the network condition for that snapshot.

The aim of a probabilistic power flow is to give the network operator more information that they can use
when planning their network. In particular, this enables a risk-based approach to network planning, as it
gives the network operator information about both the severity of an unwanted network condition e.g. a
network overload, as well as the likelihood of that condition occurring.

In the approach we have developed, this is achieved by calculating the exceedance expectation – i.e. the
average  number  of  times  in  a  year  that  the  utilisation  of  a  circuit  (or  voltage)  will  exceed  a  specified
threshold (such as the circuit’s thermal rating or the defined voltage limits).

There are two main elements that contribute to a probabilistic power flow:

· A distribution network topology: the conditions, e.g. thermal and voltage of the distribution
network depends in a deterministic way on the demands of customers connected to it. Therefore,
the determination of power flows and voltage in the network is deterministic10.

· Customer demands: a customer’s demand is inherently random.

10 In practice, simulations may exhibit some variation due to aspects of the implementation of load-flow algorithms
e.g. whether or not a network is flat-started.
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Combining probabilistic inputs with a deterministic process is well suited to Monte-Carlo analysis. The basic
process is shown below, with an indication of how this process would apply to probabilistic power flow
modelling:

1. Randomly generating inputs from a probability distribution
This would involve sampling customer demands at each node from the relevant probability
distribution.

2. Performing a deterministic computation on the inputs
This would be the calculation of the AC power flow, for example using IPSA.

3. Aggregating the results
This would be combining all of the results in order to calculate exceedance expectations.

One option for how this model could look is illustrated in Figure 2-9.

Figure 2-9 Option for Monte-Carlo load flow analysis
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This would involve sampling sets of demand inputs from probability distributions, and then running each of
these sets through an IPSA model.

However, it is likely that this could be very computationally inefficient, since there is a requirement of the
Monte-Carlo analysis called convergence. That means that new samples need to be created and included in
the calculation of desired output, up until there have been sufficient relevant outcomes to ensure that the
‘wobble’ in results as more samples are included falls within a suitable limit.

As a rule of thumb, it typically takes around 100 times the expected frequency of the event for results to
converge.  Therefore,  in  order  to  robustly  identify  a  once  per  year  event,  40,000  load  flows  might  be
required. For a 1-in-10-year event, 400,000 load flows might be required. These requirements are
impractical for any regular network planning activity. For example, we expect that with the LV IPSA models
we have created in this project it might take 1-2months to complete 1,000 load flows.

Therefore, a straightforward Monte-Carlo load flow approach is unlikely to be the right approach. As well as
being time consuming to run, it is something that has been explored regularly in previous innovation
projects on network design and may not be considered innovative enough for this project.

2.5  Implications for our novel analysis technique
There are four key conclusions that should be drawn from the information set out in this section.

1. NPg (and other DNOs) already use a range of tools for calculating the demand on their networks, and
some of these tools are based on statistical models of electricity demand. Therefore, developing an
updated statistical model for electricity demand is an evolution of the existing approach.
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2. However, both the approaches taken currently to estimating demand (ACE49 and ADMD) have
limitations, and there is potential to develop a model which improves on these in several areas. One
key observation from the CLNR data is that, particularly for small groups of customers, the variation in
demand patterns across groups of customers (and even across groups of similar customers) is very
significant (as shown in fig 2.3).

3. The opportunity to apply Bayesian statistical inference techniques to the modelling of electricity
demand is potentially very attractive. These techniques allow for explicit quantification of uncertainty
within a statistical model, and also enable a range of different data sources to be integrated in a
mathematically robust way. In addition, these techniques are well suited to situations where there is
limited data available. By adopting a Bayesian approach, it would be possible to update the demand
model in a consistent way as new sources of data become available including, but not limited to,
smart meter data.

4. When assessing probabilities associated with undesirable conditions on the network, a full Monte-
Carlo AC load flow is unlikely to be an appropriate approach, given the relatively high computational
cost of completing AC load flows. For the purposes of LV design studies, which need to be completed
relatively quickly due to the high volumes, an alternative approach will be required.
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3 Novel analysis techniques methodology
3.1 Overview
The novel analysis techniques that we have developed and tested are presented at a high level in Figure
3-1. Each component is described in further detail below.

One of the key features of the method we have developed is that variability and uncertainty in customer
demands are preserved and propagated throughout the entire model, to the greatest degree possible. That
is, we want to know certain properties (such as the mean, or a certain percentile) of the functions of the
random customer demands, rather than the functions of those properties (mean, percentiles) of customer
demands.

As an illustrative example, imagine that a year consisted of only 3 time-steps (rather than 17,520), and that
the set of demands, in kW, for a particular year was 3, 5, 4. Imagine also that a voltage, in which we are ,ݒ
interested is related to the demand, ݀,   according  to ݒ = 0.4 ∙ ݀ + 0.1 ∙ ݀ଶ. The fundamental approach
adopted by most existing methods is to calculate the mean demand as 4 kW, and state that the
corresponding voltage is (0.4 ∙ 4	) + (0.1 ∙ 16) = 3.2ܸ. However, our approach propagates the variability
by calculating that the 3 demand values correspond to voltages of 2.1V, 3.2V and 4.5V, so that the mean
voltage  is  3.27V.  This  can  be  expressed  more  formally  as  in  the  following  example,  where  we  adopt  the
common notation that random quantities are uppercase, while deterministic quantities are lowercase.

The ACE49 method involves determination of the 90th percentile value of demand, which is then set as the
design demand መ݀:

መ݀ = (ܦ)ଽ଴ݍ

where is assumed to be normally distributed with mean ܦ and variance ߤ :ଶߪ

,ߤ)ܰ~ܦ (஽ଶߪ

Then, network impacts such as utilisation caused by this design demand, ො, are evaluated as functions ofݑ
෢݀ܦ .

ොݑ = ݃൫ መ݀൯ = ((ܦ)ଽ଴ݍ)݃

where ݑ = ݃(݀) is the solution of the power flow problem for a given network with demand ݀.

Our method enables a similar, but more accurate calculation to be completed, involving the direct
calculation of the 90th percentile value of utilisation:

ଽ଴ݑ = ((ܦ)݃)ଽ଴ݍ

The method enables translation of the distribution of demand, ,ܩ)ܰ~ܦ ஽ଶ), into a distribution ofߪ
utilisations ܷ,  from  which  any  quantity  of  interest  (e.g.  the  mean,  or  a  given  quantile  such  as  90th

percentile) can be determined. To achieve this, our method decouples network modelling from the
statistical customer demand model, which has the additional benefit of reducing the time it takes to
complete a study, compared to the typical probabilistic approach of Monte Carlo simulation. As previously
stated, the Monte Carlo approach is not desirable due to the very large number of power flow simulations
required, combined with the relatively large computational resource required to carry out AC power flow
modelling.

A high-level overview of our approach is provided below, and each block will be explained in turn in the
following report sections. It should be noted that the output is represented here as ‘exceedance
expectations’, which means a function for any desired network variable e.g. current or voltage that shows
the expected number of half hours per year that any threshold value for that variable is exceeded.
However,  it  also  possible  to  express  the model  in  terms of  the value of  current  or  voltage that  has  some
predetermined exceedance expectation (expressed as a number of hours per year).
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Figure 3-1 Novel analysis technique components
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In developing this technique, we have been mindful of the following high-level functional requirements:

· The analysis technique should be as automated as possible and should not require the LV designer
to understand the underlying theory and methodology in order to make design decisions;

· The inputs to the analysis should be limited due to the high volume of LV networks that are
assessed;

· The application of automated design policies should be considered;

· There should be an option for the LV designer to use some autonomy in defining the LV network
demand based on their expert knowledge of the network e.g. specify the demand of commercial
customers, if desired, without risking a loss of consistency within the approach; and

· The results should be presented in an easy to understand and apply manner.

3.2 Demand Model
3.2.1 Customer demand distributions
Customer demand is modelled as random variable with a probability distribution based on a set of
representative demand data. For this study, we have used the TC1a dataset from the CLNR project,
comprising half-hourly load data for 8000 customers over two and a half years. It is envisaged that in
future, smart meter data would increasingly supplement the dataset, enabling a more accurate
representation of the demand and demand uncertainty of customers both with and without a smart meter.

We have explored segmenting domestic customers into 7 socio-economic “MOSAIC” categories, along with
commercial and industrial categories derived from the CLNR project. These represent a significantly
reduced number of types compared to those adopted within the CLNR project, for both domestic
customers and SMEs. It is clear that the adoption of such types is useful in that they reduce the uncertainty
around both the scale and patterns of demand from customer groups – though typically not very
significantly. Further, it  is not clear that it is practical to expect LV design engineers to accurately identify
the types of customers supplied from different parts of LV network, and as such the specification of a new,
novel, methodology should strive to be agnostic to customer segmentation. It may well be the case that as
the proposed novel methodology evolves in the future, possibly along with an increasing ability to
automatically analyse the type of customers supplied from an LV network external sources, categorisation
could bring additional benefits. Some new system of categorisation may be introduced to account for new
sources of data, rather than socio-economic categorisation (like MOSAIC categories). That might account
for different heating sources, the type of the house, new types of customer, and/or new low carbon
technology, but it is very difficult to currently predict exactly how that system of categorisation might work.
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As will be discussed in greater depth below, one of the most significant differences in our approach
compared to ACE49 is our adoption of Gamma and Weibull distributions, rather than normal distributions,
as the former are much more flexible than the latter. Indeed, Gamma and Weibull distributions can
accommodate positive-valued variables with a very wide variety of distribution shapes. In more formal
statistical terms, we can say that while the normal distribution allows specification of mean and variance
only, the Gamma and Weibull distributions allow these to be specified along with skewness - which defines
how lopsided a distribution is, and the kurtosis - which relates to the likelihood of moderately rare events11,
compared to central and extreme events. This is the model which has been assessed in the smart meter
data analytics workstream.

Examples of these distributions for different parameter sets are shown in Figure 3-2.

Figure 3-2 Example Gamma and Weibull distributions

Gamma distributions Weibull distributions

For each distribution, the Gamma and 3-parameter Weibull distributions have two or three parameters
each to define their shape. The detail of this is described in Appendix A. By fitting these distributions to the
observed customer demand, we end up with an exact equation which describes the probability of the
aggregated  customer  demand  at  a  specific  time  being  above  or  below  some  threshold,  or  within  some
interval.

3.2.2 Time of day and seasonal distributions
For a single customer, there could, in principle, be as many as 1,00012 parameters to completely define
their demand. This is largely due to distributions being genuinely different for each season, and each of the
48 half-hour slots in the day, combined with the additional hyper-parameters the Bayesian inference
approach introduces for each distribution. This is clearly overly complex and therefore, our approach

11 These four characteristics – expectation, variance, skewness and kurtosis are technically referred to as moments.
12 This assumes that there are 48 distributions for each of the four seasons, and that each distribution has 2 or 3
parameters, each of which is defined by 2 hyper-parameters. This gives a range of 768 to 1152 parameters, depending
on whether Gamma or Weibull distributions are used.

0%

10%

20%

30%

40%

50%

0 2 4 6 8 10

Demand (kW)

k = 10, θ = 2 k = 5, θ = 2

k = 5, θ = 1

0%

10%

20%

30%

40%

50%

0 2 4 6 8 10

Demand (kW)

k = 2, θ = 2.5, ζ = 0 k = 2, θ = 5, ζ = 0

k = 3, θ = 2.5, ζ = 0 k = 2, θ = 2.5, ζ = 3



Smart Network Design Methodologies  Novel analysis techniques at low voltage 30/103

introduces some well-justified simplifications. Specifically, our model considers sequences of times-of-day13

within which the differences in distribution means are relatively small, and where either:

· the differences in distribution means and standard deviations are roughly proportional, or;

· differences in standard deviation can effectively be neglected.

These consecutive periods can be temporarily represented as having the same distribution parameters,
through the use of either constant multiplicative or additive factors, so that the parameters are fitted to a
sufficiently large set of observations. The same factors can then be used to restore the uniqueness of the
individual distributions. The details of this process are presented in Appendix A.

3.2.3 Customer categorisation
As stated above, customers can be categorised into various types to improve the demand model e.g. based
on socio-economic data. Each customer type’s Gamma or Weibull distribution will have a k and θ, and a ߞ
for Weibull. In principle, the more detailed the customer-type model, the narrower the parameter
distributions become and our knowledge of the network demand and the associated state is improved.
However, increases in the number of customer types make the model of how the parameters depend on
the number of customers of each type more complex, and therefore likely to be represented more
imperfectly. There will therefore exist an optimum number of customer types where these considerations
are balanced.

For example, a demand distribution can be defined for a set of customers categorised as “Elderly Needs”
(from  the  Experian  MOSAIC  system,  used  to  categorise  customers  in  the  TC1a  dataset).  To  explore  this
issue, we temporarily suspend the treatment of demand as a set of distributions for each unique
combination of time-of-day and season, and consider a single distribution over all such combinations. The
demand distribution of all Elderly Needs customers can be represented by an “average” category
distribution defined by ݇ாே and ாே. An individual Elderly Needs customer will, however, also have theirߠ
own unique demand distribution defined by ki and θi.  Demand modelling approaches typically assume that
as  long  as  there  is  a  sufficient  number  of  customer  types  (the  15  MOSAIC  types,  for  example,  being
sufficient), the deviations of the individual ki and  θi from ݇ாே and ாே are essentially negligible, and allߠ
customers of that type can be modelled as identically distributions. However, our examination of the CLNR
data shows that there is in fact very large variability between the distributions of demand observations,
within the MOSAIC types. This is illustrated in Figure 3-3, which presents box plots for the 1st, 99th and
99.99th percentile of demand for each customer within a category.

Figure 3-3 Boxplots of 1st, 99th, and 99th percentile values of demand across MOSAIC categories type

13 For example, 15:30 to 22:00 in winter is one such sequence.
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Indeed, the figures show that the variability within the customer groups tend to be greater that the
variation across the groups, although this variability is somewhat reduced for the most extreme values (i.e.
the 99.99th percentiles). This suggests that the use of domestic customer categorisation using a system such
as MOSAIC is not strictly necessary and potentially not particularly worthwhile. However, preliminary
analysis on the CLNR project’s TC1b dataset on SME customers, not reported here, demonstrated that the
identification and characterisation of non-domestic customers is important, and that the system adopted
by the CLNR project is not sufficient.

3.2.4 Bayesian Updating
The application of Bayesian inference to network demand modelling with different sources of data is
illustrated in Figure 3-4, with five illustrative steps identified. This diagram differentiates between the data
used, the methods applied, and the models produced at different points in time and for different purposes.
It also differentiates between demand models which are determined “generically” and applied to all parts
of  the  network  across  the  entire  licence  area,  and  those  which  are  determined  for  a  specific  part  of  the
network. The mathematical foundations of this approach are presented in Appendix A.
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1. The first step is to establish an initial set of parameters (or “prior” belief) for the demand model.
This could be based on the data within the CLNR project, where the prior belief might be based on
extracting a large number of different customer profiles at random and fitting statistical models to
each of them14. Such a generic CLNR based demand model could be refined using new smart meter
data to produce a refined generic model. Other datasets may also be used, particularly for Low
Carbon Technologies (LCTs), where the CLNR project’s datasets are small. In the smart meter data
analytics workstream15 it is illustrated how creating demand models that include LCTs might be
achieved by continuing to fit Gamma and Weibull distributions to the observations of net demand
for different groups of customers. It is also possible that other approaches could be useful,
particularly for LCTs where there is much less data available. For example, a “generic” statistical
model for the “marginal distribution”16 of LCT demands and PV generation output could be
constructed. This step would only need to be completed once, and could actually be developed
without any smart  meter  datasets.  However,  a  challenge for  LV modelling  in  general  is  capturing
the temporal statistical relationship between LCT demand, PV generation and traditional domestic
demand. These challenges are described in more detail in Section 5.2.1.

2. For a specific area of the network where smart meter data is available, this refined generic  model
would be combined with that specific smart meter data (subject to rules around aggregation), and
any other network specific data, to produce a refined network-specific demand model. The
creation of a bespoke network demand model would be done each time that  specific network was
to be studied, and hence this process would need to be automated. This process would treat the
new smart meter data as a sample in the Bayesian inference process, and use it to update the
“priors” from the previous generic or refined generic demand model, producing a network bespoke
demand. A detailed presentation on such Bayesian inferencing is available in Appendix A.A.1.1.

3. The Bayesian updating process would not be limited to direct observations of customer demands.
Other informative data sources that could be used17 include network monitoring, annual or
seasonal energy consumption values, or the model of LV network total demand developed for NPg
by Element Energy. The latter is a model that includes very finely-grained spatial information about
the socio-economic characteristics of the customers at a given location, along with the presence of
specific buildings such as hospitals and schools. This spatial data is combined with Elexon
settlement data on energy consumption at higher levels of aggregation, with the latter acting as a
set of constraints on individual modelled demand at LV network level.

4. In the case of such indirect demand observations, additional statistical models will have to be
developed to represent the relationship between the indirect observations and demand
distribution parameters. These will allow the indirect observations to be translated into likelihood
functions for the demand distribution parameters. Exactly the same principle applies where only
some of the customers on a feeder have smart meters (which will almost always be the case). That
is,  we have two quantities  of  interest:  (i)  a  random variable  of  principal  interest  that  we wish to
update, which is either the total demand (net generation) on a feeder or main, or downstream of
some node within the circuit; (ii) a 2nd variable that is statistically related to the 1st, and  for which
we have direct observations. The 2nd variable could be values recorded by monitoring devices at the
beginning of a feeder, or aggregated smart meter data from a subset of customers on a feeder.

14 For a full implementation of the model, this might require 1,000s or even 10,000s of different samples.
15 Smart Meter Data Analytics Report, March 2019
16 The term marginal distribution is used to describe the probability distribution of a single variable (e.g. PV output)
without reference to the values of other variables (e.g. domestic demand), in a situation where the simultaneous
values of multiple correlated variables is also of interest (e.g. in order to understand total demand net generation).
17 We have not explored the detail of how these data sources would be integrated into the method.
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Regardless of the nature of the observations, the essence of the challenge is to mathematically
model the relationship between the observed variable and the variable of most interest, as
explained in the presentation on Bayesian updating using indirect measurement is available in
Appendix A.A.1.2. It is likely that artificial intelligence, or other machine learning method, would
conduct automatic characterisation and prediction of these relationships, as discussed in Section 5.

5. The case of Element Energy forecasts is unique among additional data sources, in that they are
point forecasts, rather than observations. Indeed, they can only become a useful source of data for
Bayesian updating of the model presented here once compared to observations, so that a statistical
model of their errors can be built. It is unclear whether annual or seasonal energy consumption
values would ultimately be used directly to update the Bayesian models of demand, or used to
update the error distribution associated with Element Energy forecasts, which in turn would update
the demand model, or – most likely – both.

6. While  even a  small  amount  of  monitoring at  the LV level  will  be  useful  immediately  as  a  form of
model validation, it will take several years of monitoring at many locations before sufficiently
accurate models can be built for this type of data to significantly update the Bayesian demand
models.

7. We envisage that the generic demand models would be updated (using these learning approaches)
on a periodic basis, e.g. annually, incorporating new smart meter data sets along with all other data
sources .  Over time, it is likely that the number of updating data sources would increase, such as
the introduction of more granular categorisation of customers. As before, whenever a specific part
of the network was to be assessed, the generic demand model would be updated using information
from that specific part of the network to produce a bespoke refined demand model for that
particular network.

We  have  explored  the  first  step  of  this  process  within  the  case  studies  which  are  described  in  Section  4
although we have used only 100 randomly selected net demand series for the purposes of the illustration,
rather than 1,000s, which would be required to implement this methodology in practice.
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Figure 3-4 Process for refining demand models as more data becomes available

3.2.5 Summary and Conclusion
The proposed approach for creating and refining the demand model is presented above. Examples,
explored through a case study, are presented in Chapter 4. The approach is relatively flexible as to how the
estimated  demand  patterns  are  used  to  explore  impacts  on  the  network.  It  can  be  used  to  carry  out  a
simple assessment of network impacts e.g. by computing a design demand and then comparing this to
thermal limits of the network components. However, it can also be applied alongside more sophisticated
statistical techniques that analyse network impact across a range of risk levels. Further detail on this is
given in Section 3.3.

Figure 3-5 illustrates that the determination of the statistical demand model is largely decoupled from its
application.
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Figure 3-5 Components of SNDM method

3.3 Network Response Model
We can characterise how a network model responds to varying levels of customer demand using a power
systems model (e.g. IPSA) and machine learning techniques. The power systems model calculates how the
network will respond to different combinations of individual customer demands. This is analogous to
modelling how individual customer demand and thus network conditions might vary across the course of
any random day. Parametric equations can then be derived that describe:

· Thermal loading of any feeder section or transformer, based on downstream feeder demand;
· Voltage behaviour of any node based on the customer demand on the feeder.

Then, for any defined set of individual customer demands, it is possible to estimate the resulting power
flow and node voltages  from the parametric  equations.  This  can be expressed as  how the utilisation of  a
given  branch  or  the  voltage  at  a  specific  node  varies  based  on  all  of  the  demands  in  the  network  e.g.
,௜(݀ଵܨ ݀ଶ, … ,݀ே) for branch/node i. Ideally, the network variable would depend on only one aggregate
demand. This is likely to be the case for thermal utilisation in un-tapered radial networks. However, for
more complex networks, such as tapered networks, networks with fewer customers dispersed along long
feeders, or networks with significant unbalance across phases, it may be necessary to consider multiple
aggregate demands, which will then require the use of multi-variate statistics (described in Section 5.2.2).

Characterisation of network response for each feeder section and node in our approach involves running
100s or 1000s of “trials” through IPSA based on plausible levels of concurrent customer demands. This is
illustrated in Figure 3-6.
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Figure 3-6 Illustration of trials and fitting a relationship for voltage or utilisation
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Note that the values of demand which are used to carry out these trials do not need to be sampled from
any particular distribution, i.e. their relative frequency of occurrence does not attempt to reflect reality,
and any source providing credible input demand values could be used. In testing this technique, we have
used the CLNR time series which are readily available. As it is important to understand the behaviour of the
network under low probability, high impact peak loading, customer demands can be scaled up to reproduce
this.

Based on our initial assessment, 1,000 IPSA runs takes in the region of 5-10 minutes for a representative LV
network. However, in principle, these trials could be run at any time e.g. in the final step of the LV model
creation, and not necessarily when the LV designer is using the model. Therefore, when the LV designer
uses the network response model (the fitted relationship between demand and network utilisation or
voltage) as part of the novel analysis technique, applying this should be much faster.

It is worth noting that different trials would need to be run to establish a revised network response model
when assessing any changes to the network configuration (such as changing normally open points), new
solutions or reinforcements, contingencies, or changes in voltage control set points. For example, Figure
3-7 shows how this might be approached for a range of running arrangements: each running arrangements
leads to a different set of trial results, and (in this illustrative example) a different linear relationship. The
overall utilisation would then be the most onerous result for each possible value of demand (the orange
line).
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Figure 3-7 Illustration of trials and fitting a relationship for utilisation for different contingencies
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3.3.1 Network response model example
An example of a network response model is shown in Figure 3-8 which compares the relationship between
the total aggregate demand on an LV network and the utilisation of the secondary transformer. In this case,
it is easy to determine a simple linear relationship to explain how the transformer utilisation will  vary for
any combination of down-stream demands. With such a relationship, the majority of the variation in the
transformer utilisation can be explained based on knowing only the behaviour of the aggregate
downstream demand.

Figure 3-8 Example of response of transformer utilisation to downstream demand

The presence of a broadly linear relationship is no surprise – it is a well-known result that when per-unit
voltages are close to unity the power flow equations can be linearised (this is often known as DC load flow).
Our expectation is that a small amount of inaccuracy in the results (due to not re-running the power flow
simulations) will be acceptable if it significantly boosts the time taken to run the models, and in principle
this error, and the increase in uncertainty that it would lead to, could even be included in the statistical
model directly.

It may not always be possible to find a relationship which explains close to 100% of the variation based on
only  a  single  variable.  For  example,  a  large  non-domestic  load  on  the  end  of  a  feeder  with  an  unusual
consumption pattern could affect voltages along the length of the feeder. However, our expectation based
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on tests carried out on the Sinderby network is that it should be possible to explain the majority of the
variation in most cases based on aggregating downstream demand into one or two groups. This helps
simplify the statistical modelling, as multivariate statistics can be very complicated, particularly where there
are more than 3 or 4 variables.

However, it may also be beneficial in terms of aggregation when assessing the customer demands for
specific customers on a particular part of the network. In such cases, there are concerns about customer
privacy, if DNOs (or others) are allowed access to completely disaggregated customer smart meter data.
This is discussed in more detail in Section 5.1.2

3.4 Stylised example of determining probabilistic network condition
In this section, we present a stylised example of how the novel analysis techniques can be applied to the
design of an LV network. Note that this uses purely illustrative values. We consider first the case where
demands are modelled in a frequentist manner, i.e. their probability distributions have fixed and
(approximately) known parameter values18. As a result, the term ‘predictive distribution’ has no specific
meaning other than probability density functions (PDFs), as illustrated in Figure 3-919.

Figure 3-9    Step 1: Demand probability density function

Step 1: Produce PDF’s of the aggregate customer demand for each hour-of-day and season, using the
methods described in Section 3.2.

Step 2:Use this set of PDFs  to generate a set of “exceedance functions”, i.e. the probability that demands
exceeds the input value, as shown in Figure 3-10. This is one minus the cumulative probability of any given
level of demand.

Exceedance probabilities can be converted to exceedance expectations by multiplying by the number of
periods with the same time-of-day, for each season. This is done for each combination of time-of-day and
season, and then summed. For example, for a customer whose demand is always positive, their exceedance
expectation will be 17,520 half-hours for 0 kW (24h/day x 365 days x 2).

18 This could alternatively correspond to a Bayesian posterior predictive distribution, where the uncertainty has been
collapsed out and reflected within the distribution.
19 We have deliberately omitted the scale from this graph, as it is difficult to meaningfully define this for a continuous
PDF.
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A 1-in-10-year event therefore has an exceedance expectation of 1/10, or a probability of 1/175,200 (which
is equivalent to a 0.001% probability), assuming this is as defined as the half-hourly average demand level
which occurs once in a ten-year period.

For simplicity when discussing these concepts diagrammatically, we will continue to work with exceedance
probability curves (in units of % rather than half-hours) and look at larger probabilities (e.g. 20%) than a
network designer would be interested in practice (which would be closer to 0.001%).

Figure 3-10  Step 2: Probability of demand being exceeded

Step 3: Based on the network response trials completed in IPSA, an equation can be found which describes
the utilisation (or voltage) of a feeder section as a function of the relevant aggregated demand. In this
illustrative case, this is represented reasonably well by a linear function, which depends on only one
variable (e.g. aggregate downstream demand) as shown in Figure 3-11. Multi-variate applications are
discussed at a high level in Section 5.2.2.

Figure 3-11 Step 3: Utilisation of network varying with demand

Step 4: The network planner can determine what level of aggregate customer demand leads to a utilisation
of 100% from Step 3. In this case, a demand of approximately 3.5 kW leads to a utilisation of 100%.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

Pr
ob

ab
ili

ty
of

de
m

an
d

be
in

g
ex

ce
ed

ed

Demand (kW)

2.

0%

50%

100%

150%

200%

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

U
til

isa
tio

n
of

br
an

ch

Pr
ob

ab
ili

ty
of

de
m

an
d

be
in

g
ex

ce
ed

ed

Demand (kW)

2.

3.



Smart Network Design Methodologies  Novel analysis techniques at low voltage 40/103

Figure 3-12 Step 4: Demand associated with a given utilisation

Step 5: By comparing this to the demand model exceedance function, the probability that demand will be
high enough such that the feeder section has a utilisation of 100% or higher can be estimated. In this
stylised example, there is a 32% chance of the feeder section utilisation being exceeded. This would be
mean that for a given year, there are 5,606 half-hour periods (0.32 x 24h/day x 365 days x 2) during which
half-hourly aggregate customer demand is likely to cause the feeder section utilisation to exceed 100%.

Figure 3-13 Step 5: Probability of demand level

3.4.1.1 Extension to Bayesian inference
The stylized example above involved a demand model with a single probability distribution with known and
fixed parameter values. However, in our “Bayesian” inference model, these parameters are also uncertain
and have a distribution, and in this sub-section we present how the process above can be adapted to
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account for this. The completely correct adaptation is to replace the generic demand PDFs with Bayesian
posterior predictive distributions, calculated as shown in appendix A.120.

However, it is not always straightforward or even possible to calculate these quantities precisely, and an
approximate, sampling-based approach can be adopted instead21.  The essence of  such an approach is  to
randomly  sample  sets  of  PDF  parameter  values  from  their  distributions  of  possible  values,  in  order  to
produce multiple PDFs.

Figure 3-14 shows three demand models characterised by PDFs with different sampled parameter values.

Figure 3-14 Example of multiple different distributions

Each PDF has a different level of demand for which the probability of exceedance is 20% - this is because
the demand for the specific group of customers represented by a particular PDF is fundamentally variable
and only partially predictable. However, if a designer does not know which of these three groups is actually
connected to their particular network, then there is also uncertainty about the distribution of demands.
This means, that for a given utilisation, there will be a range of possible exceedance expectations – one for
each sampled set of parameters. For example, with three samples, we get three possible demand values
associated with any probability of demand being exceeded.

We can visualize the impact of 100s of repeated samples from the possible values of the distribution’s
parameters, as in Figure 3-15.

20 The prior and posterior distributions should ideally be enhanced by the calculation of accompanying ‘credible
intervals’, that reflect the range of values the distribution parameters might credibly take, and are therefore roughly
the Bayesian equivalent of confidence intervals.
21 We have adopted the sampling-based approach in our case study, but a tool that implements this technique could
use either approach.
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Figure 3-15   Example of hundreds of different distributions

In this case, there are 100s of possible distributions all overlaid, all based on subtly different sets of
parameters. The orange lines show the average probability associated with each level of demand, as well as
the range of values which include 95% of the possible probabilities. One option would be to collapse down
this range at this point and only consider the average value – this would be a completely valid approach,
but it does mean that some of the useful information about the uncertainty in this estimate would be lost.

This is simplified slightly in Figure 3-16 – for any given exceedance probability, there is a 95% chance that
the demand is within the blue shaded range. For example, the demand that is exceeded 20% of the time is
95% sure to be within the range of 5.5 kW and 8 kW.

Figure 3-16  Expected and 95% possible range of distributions

Essentially, for any level of risk (probability of exceeding demand) there is actually a distribution of possible
values of demand. This distribution is defined by the uncertainty in the parameter set which defined the
original demand distribution. This is illustrated in Figure 3-17.
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Figure 3-17  Expected and 95% possible range of distributions

Note  that,  over  time,  as  more  new  data  is  incorporated  within  the  model  and  the  classification  of
customers improves, the uncertainty around the parameters decreases and the range of possible values
“tightens” around the average22 as illustrated in Figure 3-18.

Figure 3-18 95% possible range ‘tightening’ as new data is incorporated

3.5 Usage and outputs of the method
In  this  section,  we build  on the stylised example of  Section 3.4  in  order  to  describe the different  ways  in
which an LV designer could use the methods, the sort of outputs they might produce and the role of
different options within the network planning process.

Full model: The “full” model combines the Bayesian representation of demand with knowledge of the
network response (from the decoupled IPSA model) to produce a full probabilistic model of the utilisation

22 This ‘tightening’ is not always 100% guaranteed – it is possible, in principle, for consumption patterns to change
sufficiently quickly (e.g. due to a sudden but uncertain adoption of electric vehicles) that the process of learning about
these changes couldn’t keep up, and uncertainties would temporarily increase.
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and voltage of each branch node. This is a full risk-based assessment involving the calculation of ranges for
exceedance probability functions where the function arguments are branch utilisations and busbar
voltages, rather than demands.

To reiterate and expand commentary in the previous section, the Bayesian approach, if followed correctly,
provides a single PDF that fully accounts for the fundamental variability in customer demand, and the
uncertainty that exists about which customers are connected to the network, i.e. the posterior predictive
distribution. This is the thick orange line shown in Figure 3-19.

However, due to the mathematical complexity of calculating this distribution exactly, it can be
approximated as the average of many curves resulting from randomly sampled parameter sets. We also
believe that it is illustrative to include the ‘envelope’ that contains most of the sampled curves, as a
measure of the model uncertainty, although this would not need to be provided as an output of a
modelling tool that implements this methodology. This is illustrated as the transparent orange area in
Figure 3-19.

An example of the output of this “full” model for a single branch is shown in Figure 3-19.

Figure 3-19  Output of the “full” model

In this example, our approximated predictive distribution states that a utilisation of 7.7 kVA is expected to
be exceeded 15% of the time. We can supplement this prediction by stating that in 95% of our sampled
curves, the demand exceeds 7.7 kW  between 5% and 25% of the time. In addition, we have a complete
understanding of similar outputs for all other levels of utilisation.

Pre-defined risk or utilisation level: The first optional simplification of this model is to consider a “fixed”
level of risk (or equally simply, a fixed level of utilisation). The assessment would then be based on a set risk
level or set utilisation/voltage, the corresponding demand according to the estimated predictive
distribution, and the range of demands obtained from the sampled exceedance probability functions. For
example, the designer may want to know what is the modelled utilisation, and accompanying uncertainty,
corresponding to the  demand value expected to occur only once in every 10 years.

For example, our predicted circuit utilisation is 85% for a demand level we expect to be exceeded 20% of
the time.  We also note that for 95% of the sampled parameter sets, the utilisation level defined in this way
lies  between 65% and 105%.  Remember that  this  is  only  calculated for  one level  of  demand i.e.  the one
which is expected to be exceeded 20% of the time (like ACE49). This is illustrated in Figure 3-20.

Conversely, we could examine the risk associated with a circuit utilisation of 100%, and find that the model
predicts  this  would  be  exceeded  15%  of  the  time,  on  average.  However,  we  also  note  that  for  95%  of
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sampled parameter sets, this utilisation’s exceedance probability ranged between 5% and 25%.  This is
illustrated in Figure 3-21.

The only difference between this and the “full” model is that these calculations are only completed for a
pre-set level of either risk or utilisation.

Figure 3-20  Calculating utilisation for a specified level of risk
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Figure 3-21  Calculating exceedance expectation for a specified utilisation

Expected results: As suggested earlier, a further simplification would be to only take notice of the
approximated predictive distribution, and ignore the ranges found in the sampling. This would just tell us
that the utilisation corresponding to the level of demand that is exceeded 20% of the time is predicted to
be 85% (Figure 3-20), or that 100% utilisation is predicted to occur 15% of the time (Figure 3-21).

Load aggregation: It would be possible to simplify the model further by assuming a simplified model of the
network, or potentially not considering any model of the network whatsoever (i.e. only considering the
aggregation of load and comparing this to, for example, feeder and transformer ratings). This is very similar
to what ACE49 does currently. It is not clear whether this saves much time or effort compared to a single
IPSA run, and additionally this would not account for losses and reactive power. This would present results
in a very similar manner, but by simplifying or removing the modelling of the network, they would
inevitably be less accurate.

Outputs: We believe that the LV Designer should be shown results for the whole LV network even if, behind
the scenes, the algorithm is looking at each branch and voltage one-by-one. As well as presenting tabulated
results (like expected values and ranges), results could be displayed as a “heat map” of network thermal
and voltage conditions.

Role of different options: This  is  not  an exhaustive  list  of  options  –  these could be broken up into more
variants with added or reduced complexity. Our view is that all (or most) of these options could be part of a
(mostly) automated modelling process. This process would start by applying the simplest method and, if
the result was at all ambiguous, escalate to a higher level of complexity before the result is clearer.

For  example,  if  it  is  found  that  the  1-in-10-year  demand  is  expected  to  correspond  to   a  50%  asset
utilisation, then there is little need to use a more complex method. However, if the expected utilisation is
found to be 90%, then it might be necessary to rigorously incorporate the uncertainty associated with the
model and produce an approximate Bayesian predictive distribution.
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How  exactly  this  process  all  fits  together  will  depend  on  the  time  and  the  resource  available,  and  the
importance of precision in the calculations. This might depend, for example, on the nature of the customers
connected to the network or the voltage level which is being studied.

3.6 Comparison with existing statistical approaches
It is useful to compare the approach we are proposing with the existing statistical approach documented
within ACE49. This illustrates that our approach is an evolution of existing practice, rather than being
something completely new and unprecedented.

· Type of distribution: Our approach uses Gamma and Weibull distributions, rather than the simpler
Normal distribution. Although more complicated, these have been found to be a better bit for the
data observed from CLNR.

· Estimation of parameters & data sources: Our approach does not impose any strong assumptions
on how the parameters of these distributions are estimated, certainly none as strong as assuming
a hard-link between half hourly demand and annual energy consumption. Instead, parameters
would be calculated automatically based on statistical inference from smart meter data, on a
circuit-by-circuit basis.

Uncertainty about distributions will be reflected using the Bayesian approach, in which parameters
themselves are subject to uncertainty. Rather than having parameters calculated initially and only
recalculated them infrequently, our approach is designed to periodically draw on new data (which will be
provided periodically from smart meters and elsewhere) to update and refine these parameters.

· Level of risk: Our  approach  does  not  necessarily  involve  selecting  a  risk-level  in  advance  (e.g.
calculating a design demand based on 90th percentile demand values). Instead, it could allow a
much greater range of demand conditions to be studied within a power flow model. This allows
quantification of both the likelihood and magnitude of any network conditions, rather than just a
calculation of the magnitude of a single demand condition with a pre-specified likelihood.

This means that the method can consider quantiles of risk of network conditions (e.g. circuit utilisations and
voltages), rather than just quantiles of risk associated with demand. Because power flow is a highly non-
linear problem, the risk quantiles associated with network conditions and demand will not necessarily align.

As discussed in 2.1, the preceding statement is also true for the statistical model which underpins the
ACE49  approach,  however,  this  is  not  done  in  practice  as  the  90%  level  of  risk  is  ‘baked-in’.  However,  it
would still be possible to reduce the proposed novel approach statistical model down to a single pre-
defined level of risk, as is currently done with the ACE49 approach, and to only assess the power flow for
this single demand condition. There would still be considerable benefits from the other aspects or our
proposed approach.
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4 LV Case Studies
4.1 Case study overview
To demonstrate the novel analysis techniques, we have carried out case studies on two of the LV network
IPSA models which have been built within this project: Cranwood, and Sinderby.

After the network has been built in the power systems software, there are four steps to be followed in
order to complete the case study as per Figure 3-1, as described in Section 3:

1. Fit a probabilistic model for the network’s customer demands (Section 3.2)

2. Characterise the response of the network model (Section 3.3)

3. Produce predictive distributions for the network conditions (Section 3.4)

4. When network-specific data becomes available – essentially smart meter data, network monitoring
or annual energy consumption data, use it to (i) update the demand model and (ii) use the updated
demand model to update the predictive distributions of network thermal utilisation and voltage.

The extent to which we could carry out the final step was limited by not having any such data specific to
Sinderby and Cranwood customers. Therefore, we have simulated the effect of obtaining partial smart
meter data, for illustrative effect, using ‘local’ SMETS223 data synthesised from the CLNR dataset, and have
not simulated the acquisition of monitoring data or annual energy consumption.

Each of the steps above is described in detail below, first for the Cranwood network and then Sinderby.

4.1.1 CLNR data
In this case study, we have used extensively the customer consumption time series produced as part of the
Customer Led Network Revolution (CLNR) project. We have used this in the absence of SMETS2 data,
although in practice, we expect the CLNR data will  continue to be useful for many years even as SMETS2
data starts to accumulate. This data consists of multiple “test cells” e.g. TC1a which provides the
consumption profiles for domestic customers.

These case studies have exclusively used the TC1a data. This includes approximately 8,000 half-hourly
consumption time series, covering two and a half years and including two winters, collected between
January 2011 and December 2013. After filtering out monitored customers with poor data quality, the
number  of  series/  customers  fell  to  around  5,000.  As  a  result  of  the  trial  start  and  end  dates,  for  each
customer we essentially have data for two winters and three summers.

For creating seasonal demand models for an individual or specific group of customers, the number of data
points available is given by:
[݊݋ݏܽ݁ݏ	ℎ݁ݐ	݊݅	ݏݕܽ݀	݂݋	ݎܾ݁݉ݑ݊] x [݊݋ݏܽ݁ݏ	ℎ݁ݐ	݂݋	ݏ݊݋݅ݐ݅ݐ݁݌݁ݎ	݂݋	ݎܾ݁݉ݑ݊]	×  48,  and  the  number  of
data points for specific times of day is given by:
[݊݋ݏܽ݁ݏ	ℎ݁ݐ	݊݅	ݏݕܽ݀	݂݋	ݎܾ݁݉ݑ݊] This latter quantity .[݊݋ݏܽ݁ݏ	ℎ݁ݐ	݂݋	ݏ݊݋݅ݐ݅ݐ݁݌݁ݎ	݂݋	ݎܾ݁݉ݑ݊]	×
evaluated for each season is summarised in Table 4-1 below. In practice, for a given customer profile, this
might be lower due to individual data quality issues.

23 Note that this could be any smart meter data, including enrolled SMETS1 data.
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Table 4-1: Data available from CLNR trials

Season Maximum
possible number
of half-hours for
each time of day

Average number of half-
hours for each time of day

per complete year

Number of years of
complete data

Spring (Mar – May) 217 92 2.36

Summer (Jun – Aug) 254 92 2.76

Autumn (Sep – Nov) 211 91 2.32

Winter (Dec – Feb) 191 90.25 2.12

These are time series of total kWh consumption in each half-hour. To use them in our demand modelling,
we multiply each measurement by two, to convert from kWh to kW, giving the average half-hourly power
demand.

4.2 Cranwood case study
The Cranwood network has been built in IPSA based on data contained in eAM Spatial. The network is
shown in Figure 4-1.
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Figure 4-1: Skeleton of Cranwood LV Network

In this case study, we have considered the risk of each of the six circuits becoming thermally overloaded,
and of the nodes at the end of feeders experience unacceptable levels of voltage drop.

Cranwood supplies a total of 611 domestic and non-domestic customers as well as 120 unmetered supplies,
on six feeder circuits. Data is not available on the exact split of domestic and non-domestic customers. Five
of these circuits have a rating of 239 kVA, whereas the sixth has a rating of 308 kVA. All cables are four core
copper PILC. The first five have cross sectional areas of 0.2 sq inch, and Feeder 6 has a cross sectional area
of 0.3 sq inch.

A description of the six feeders is provided in Table 4-2.

Table 4-2: Description of six Cranwood Feeders

Feeder Customers Unmetered supplies Rating Busbar Ref

Feeder 1 92 18 239 kVA 100171386

Feeder 2 168 28 239 kVA 100152251

Feeder 3 99 26 239 kVA 100173740

Feeder 4 42 7 239 kVA 100149279

Feeder 5 127 22 239 kVA 100152853
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Feeder Customers Unmetered supplies Rating Busbar Ref

Feeder 6 83 20 308 kVA 100153721

The  400V  network  is  supplied  by  an  11kV  to  433V  transformer.  This  means  that  the  nominal  voltage,
assuming the transformer is on the nominal tap) at the secondary busbar is typically at around 1.0825 per
unit.

4.2.1 Probabilistic model for demand
The first stage in the case study is to produce separate probabilistic representations of  the demand of all
the customers on each of the six Cranwood feeders – this is necessary as we are interested in the thermal
and voltage characteristics of each of these six feeders, and this is caused by the demands on each of these
feeders24. This was achieved by:

1. Sampling from the CLNR datasets to produce time series of the aggregate demand of the customers
supplied from each feeder.

2. Fitting Gamma and Weibull distributions to these time series, for each period in the day (half-
hours) and season, as described in the Smart Meter Data Analytics Report.

3. Calculating demand exceedance expectations across the whole year from these distributions.

In order to account for the variability between different customers of the same group (as discussed in 3.2),
we repeat this entire process 100 times for each feeder using  100 randomly selected groups of customers
each  time.  Each  of  these  groups  is  defined  the  same  way,  i.e.  the  same  customer  numbers,  the  same
number of unmetered supplies, and the same customer types during initial investigations –  but
nonetheless they exhibit quite distinct consumption patterns. Considering 100 different possible
combinations therefore allows us to account for this variability, and quantify the extent to which it
introduces uncertainty into the network planning process. As previously discussed, the average of the 100
fitted distributions is taken as an approximation of the prior predictive distribution.

We refer to each of these 100 random samplings from the CLNR data as a “draw”. We chose 100 draws as
this is a large enough number to allow us to illustrate and understand the variability, but not so large that it
becomes computationally intensive to carry out the analysis.

4.2.1.1 Sampling from CLNR
For each of the feeders in the network, customer profiles were randomly drawn from the CLNR datasets.
This  process  was  repeated  100  times  resulting  in  a  table  with  100  columns  and  N  rows,  where  N  is  the
number of customers connected to that LV feeder. Each “draw” is defined the same way but, as can be
seen in Figure 4-2, the value of each row is different for every draw, and so we are clearly accounting for
the  variability  between  customers  when  carrying  out  the  case  study.  To  be  entirely  accurate,  the  table
would extend to 100 columns (one for each draw) and as many customers as are in the group whose
demand is being modelled.

Each profile listed in this table (e.g. TC1a_1139) is a time series of half-hourly consumption kWh values,
spanning two and a half years, for a total of approximately 42,000 data points. Again, we use 100 draws for
the purposes of illustrating the variability, but in practice the model could use more.

24 If we had included the transformer in the case study, then it would have been necessary to also fit a model (i.e.
probability distribution parameters) for the aggregate demand of all of the customers supplied by the transformer.
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Figure 4-2: Example of randomised CLNR profile selection for illustrative feeder

For simplicity, we have represented the non-domestic customers within the network using domestic
profiles. This is because data is not available for Cranwood to define the split between domestic and non-
domestic at a granular level. A brief inspection on Google maps suggests that any non-domestic customers
will have reasonably small demands, as they are small shops, hair salons etc. There is significant variability
in non-domestic customer demands within the CLNR data so we believe that this is appropriate given the
limited number of non-domestic customers within the network and the reduced credible range for their
peaks, compared to the CLNR SME dataset.

For each draw (e.g. down each column in Figure 4-2), the total demand in each half-hour was determined
by aggregating together the demands from each customer and adding 100W for each unmetered supply i.e.
considering an unmetered supply to be represented by a constant load. This resulted in 100 sets of time
series – i.e. a table with 100 columns (representing each draw) and around 42,000 rows (representing all of
the half-hours monitored in the CLNR trials). An example is shown in Figure 4-3, which presents the total
aggregate demand of the 42 customers on Feeder 4 for one day (48 periods) for two of the 100 draws. The
overall shape of the demand profile is similar but with some important differences (e.g. the peak demand is
much higher for Draw 004).

Draw 000 Draw 001 Draw 002 Draw 003 Draw 004 Draw 005 Draw 006 Draw 007 Draw 008 Draw 009
Customer 1 TC1a_1139 TC1a_3516 TC1a_3215 TC1a_5346 TC1a_7737 TC1a_4098 TC1a_631 TC1a_5988 TC1a_5474 TC1a_1699
Customer 2 TC1a_5346 TC1a_7528 TC1a_570 TC1a_8495 TC1a_315 TC1a_2815 TC1a_1599 TC1a_8615 TC1a_8137 TC1a_8255
Customer 3 TC1a_8844 TC1a_5879 TC1a_1078 TC1a_2335 TC1a_7581 TC1a_126 TC1a_2129 TC1a_2023 TC1a_725 TC1a_4773
Customer 4 TC1a_6233 TC1a_9016 TC1a_7704 TC1a_4355 TC1a_1424 TC1a_2816 TC1a_4051 TC1a_5151 TC1a_431 TC1a_7353
Customer 5 TC1a_5036 TC1a_3934 TC1a_3135 TC1a_5165 TC1a_6243 TC1a_5957 TC1a_5389 TC1a_1478 TC1a_4977 TC1a_865
Customer 6 TC1a_8709 TC1a_6419 TC1a_1650 TC1a_5492 TC1a_5215 TC1a_5796 TC1a_73 TC1a_2179 TC1a_2526 TC1a_546
Customer 7 TC1a_1827 TC1a_1277 TC1a_1441 TC1a_1050 TC1a_2815 TC1a_7848 TC1a_859 TC1a_6186 TC1a_7388 TC1a_2108
Customer 8 TC1a_6750 TC1a_2015 TC1a_4007 TC1a_191 TC1a_3921 TC1a_4535 TC1a_2866 TC1a_4190 TC1a_6109 TC1a_917
Customer 9 TC1a_7294 TC1a_1344 TC1a_3181 TC1a_3850 TC1a_3185 TC1a_7801 TC1a_1843 TC1a_7766 TC1a_3456 TC1a_6601
Customer 10 TC1a_8968 TC1a_4820 TC1a_4882 TC1a_3106 TC1a_4798 TC1a_5672 TC1a_4911 TC1a_1685 TC1a_2183 TC1a_5869
Customer 11 TC1a_807 TC1a_297 TC1a_3385 TC1a_4037 TC1a_3961 TC1a_7412 TC1a_8704 TC1a_6877 TC1a_5111 TC1a_6752
Customer 12 TC1a_4757 TC1a_8349 TC1a_1900 TC1a_1994 TC1a_3017 TC1a_8882 TC1a_2803 TC1a_2178 TC1a_5315 TC1a_6954
Customer 13 TC1a_513 TC1a_1174 TC1a_5682 TC1a_9088 TC1a_7968 TC1a_6981 TC1a_4525 TC1a_249 TC1a_4531 TC1a_3854
Customer 14 TC1a_6894 TC1a_6917 TC1a_6198 TC1a_9074 TC1a_6738 TC1a_5252 TC1a_3492 TC1a_947 TC1a_9015 TC1a_1747
Customer 15 TC1a_9006 TC1a_5799 TC1a_9163 TC1a_6360 TC1a_473 TC1a_4066 TC1a_3831 TC1a_660 TC1a_1692 TC1a_2689
Customer 16 TC1a_8868 TC1a_2442 TC1a_121 TC1a_5711 TC1a_2129 TC1a_4334 TC1a_8337 TC1a_3987 TC1a_1216 TC1a_6339
Customer 17 TC1a_2548 TC1a_6803 TC1a_3985 TC1a_7445 TC1a_1918 TC1a_6719 TC1a_4355 TC1a_231 TC1a_3908 TC1a_5439
Customer 18 TC1a_7410 TC1a_6561 TC1a_6534 TC1a_1882 TC1a_7716 TC1a_8567 TC1a_455 TC1a_5752 TC1a_7878 TC1a_5413
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Figure 4-3: Example of randomly selected total demand profiles

To represent the presence of SMETS2 meters, we fixed the selection of a subset of profiles when sampling
from  CLNR.  This  had  the  effect  of  reducing  the  variability  in  demand  observed  between  different  draws.
This represents the fact that, for customers with SMETS2 meters, we have no (or at least significantly
reduced) uncertainty about their patterns of demand, but for those without SMETS2 meters, there is no
reduction in uncertainty about their patterns of demand (which, in the Bayesian context, means their
parameter values are still uncertain). The overall impact on the group of customers is that the uncertainty
reduces somewhat– the greater the assumed penetration of smart meters, the greater the reduction in
uncertainty.

For example, if we wanted to simulate the presence of ten SMETS2 meters on a feeder with 18 customers,
we  would  select  the  same  CLNR  profiles  for  customers  1-10,  and  then  randomly  select  the  profiles  to
represent customers 11-18.  This is illustrated in Figure 4-4, where the first ten rows are identical across all
columns, and rows 11 to 18 change.

For this case study, we have therefore repeated all of the demand modelling for each of the feeders for a
scenario  where  around  2/3  of  customers  have  a  SMETS2  meter  –  i.e.  by  “fixing”  2/3  of  the  randomly
selected profiles.
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Figure 4-4: Example of randomised CLNR profile selection, with ten profiles fixed

4.2.1.2 Gamma and Weibull model
The next stage was to fit a statistical model to the sampled values of total aggregated demand for the
group, where a group represents the total demand on one of the six feeders.

Throughout most of the rest of this section, up until Figure 4-16, we show the example of the model being
fitted for  the same specific  draw of  demand data  for  Cranwood Feeder  4,  which has  42 customers  and 8
unmetered supplies. However, when applying this to the novel analysis techniques method, it is important
to recognise that the model for a single draw is incomplete, and it is necessary to consider the variability
and uncertainty introduced by having separate models for each of the 100 draws.

The first step is to split the year into four seasons and 48 times of day – this is because demand is known to
be heavily season and time-of-day dependent. Figure 4-5 shows the range of demand values observed for a
specific group of customers across all of the half-hours in winter. The thick and thin black bars are actually a
compressed box plot25,  showing the four  quantiles  of  the data  (i.e.  the 0th to  25th percentile, 25th to 50th

percentile, the 50th to  75th percentile and the 75th to 100th percentile). These show the wide range of
possible values. The white dot indicates the average demand in the winter in each time period.

25 The white dot shows the average, the thin black line at the bottom shows the 0th to 25th percentile, the thick black
line below the white dot shows the 25th to 50th percentile, the thick black box above the white dot shows the 50th to
75th percentile, and the thin black line at the top shows the 75th to 100th percentile.

Draw 000 Draw 001 Draw 002 Draw 003 Draw 004 Draw 005 Draw 006 Draw 007 Draw 008 Draw 009
Customer 1 TC1a_7808 TC1a_7808 TC1a_7808 TC1a_7808 TC1a_7808 TC1a_7808 TC1a_7808 TC1a_7808 TC1a_7808 TC1a_7808
Customer 2 TC1a_7021 TC1a_7021 TC1a_7021 TC1a_7021 TC1a_7021 TC1a_7021 TC1a_7021 TC1a_7021 TC1a_7021 TC1a_7021
Customer 3 TC1a_8821 TC1a_8821 TC1a_8821 TC1a_8821 TC1a_8821 TC1a_8821 TC1a_8821 TC1a_8821 TC1a_8821 TC1a_8821
Customer 4 TC1a_6423 TC1a_6423 TC1a_6423 TC1a_6423 TC1a_6423 TC1a_6423 TC1a_6423 TC1a_6423 TC1a_6423 TC1a_6423
Customer 5 TC1a_1601 TC1a_1601 TC1a_1601 TC1a_1601 TC1a_1601 TC1a_1601 TC1a_1601 TC1a_1601 TC1a_1601 TC1a_1601
Customer 6 TC1a_6627 TC1a_6627 TC1a_6627 TC1a_6627 TC1a_6627 TC1a_6627 TC1a_6627 TC1a_6627 TC1a_6627 TC1a_6627
Customer 7 TC1a_8750 TC1a_8750 TC1a_8750 TC1a_8750 TC1a_8750 TC1a_8750 TC1a_8750 TC1a_8750 TC1a_8750 TC1a_8750
Customer 8 TC1a_429 TC1a_429 TC1a_429 TC1a_429 TC1a_429 TC1a_429 TC1a_429 TC1a_429 TC1a_429 TC1a_429
Customer 9 TC1a_6987 TC1a_6987 TC1a_6987 TC1a_6987 TC1a_6987 TC1a_6987 TC1a_6987 TC1a_6987 TC1a_6987 TC1a_6987
Customer 10 TC1a_1247 TC1a_1247 TC1a_1247 TC1a_1247 TC1a_1247 TC1a_1247 TC1a_1247 TC1a_1247 TC1a_1247 TC1a_1247
Customer 11 TC1a_807 TC1a_297 TC1a_3385 TC1a_4037 TC1a_3961 TC1a_7412 TC1a_8704 TC1a_6877 TC1a_5111 TC1a_6752
Customer 12 TC1a_4757 TC1a_8349 TC1a_1900 TC1a_1994 TC1a_3017 TC1a_8882 TC1a_2803 TC1a_2178 TC1a_5315 TC1a_6954
Customer 13 TC1a_513 TC1a_1174 TC1a_5682 TC1a_9088 TC1a_7968 TC1a_6981 TC1a_4525 TC1a_249 TC1a_4531 TC1a_3854
Customer 14 TC1a_6894 TC1a_6917 TC1a_6198 TC1a_9074 TC1a_6738 TC1a_5252 TC1a_3492 TC1a_947 TC1a_9015 TC1a_1747
Customer 15 TC1a_9006 TC1a_5799 TC1a_9163 TC1a_6360 TC1a_473 TC1a_4066 TC1a_3831 TC1a_660 TC1a_1692 TC1a_2689
Customer 16 TC1a_8868 TC1a_2442 TC1a_121 TC1a_5711 TC1a_2129 TC1a_4334 TC1a_8337 TC1a_3987 TC1a_1216 TC1a_6339
Customer 17 TC1a_2548 TC1a_6803 TC1a_3985 TC1a_7445 TC1a_1918 TC1a_6719 TC1a_4355 TC1a_231 TC1a_3908 TC1a_5439
Customer 18 TC1a_7410 TC1a_6561 TC1a_6534 TC1a_1882 TC1a_7716 TC1a_8567 TC1a_455 TC1a_5752 TC1a_7878 TC1a_5413
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Figure 4-5: Distribution of total demand across half-hour periods in winter, for a single draw of Cranwood
Feeder 4

As described in Appendix A, periods are grouped into sequences based on observed features of the data
(e.g. relationships between the mean and standard deviation). For example, one sequence is winter
between 15:30 and 22:00, as shown below in Figure 4-6. The total demand in each of the periods in this
sequence are similar, but have different means, and a standard deviation which varies approximately in
proportion to this mean.

Figure 4-6: Winter afternoon and evening sequence of modelled periods, for a single draw for Cranwood
Feeder 4

This “violin plot” is essentially showing the histogram of the data for each period, rotated on its side. These
twelve histograms are shown explicitly in Figure 4-7. These histograms show the range and frequency of
possible values of total demand on Cranwood Feeder 4 for this draw, for each of the half-hour periods in
this sequence.
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Figure 4-7: Histograms of data for winter afternoon and evening sequence, for a particular draw for
Cranwood Feeder 4

There are limited data points (fewer than 200) for each half-hour period in this winter sequence, since
there are only ~90 days in each year in winter from which to obtain measurements, and CLNR includes two
winters,  as  described  in  Section  4.1.1.  Fitting  a  model  to  such  a  small  amount  of  data  –  e.g.  a  distinct
distribution for each time of day and season - could be challenging to do robustly, and could result in
“overfitting”26. In order to overcome this, and to reduce the number of parameters needed for the model,
all of the data in this sequence is pooled together. This is done by normalising the data with respect to the
mean across the whole sequence, so that each period has the same mean (and, for distributions that are
modelled with Gamma, approximately the same standard deviation).

This particular period is best modelled using Gamma distributions, therefore the normalisation is achieved
by ݀݊ܽ݉݁݀	݀݁ݏ݈݅ܽ݉ݎ݋ܰ = 	݀݊ܽ݉݁ܦ × ௌ௘௤௨௘௡௖௘	ெ௘௔௡

௉௘௥௜௢ௗ	ெ௘௔௡
.  This  is  illustrated  in  Figure  4-8.  However,  similar

steps would be followed for periods which are modelled using Weibull distributions.

26 Overfitting occurs when, in fitting a model to a small data set, the resultant model describes that particular small
data set very well, but would provide a poor fit for additional data gathered in the future, suggestion a level of
precision that is not justified by the amount of data being used.
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Figure 4-8: Winter afternoon and evening sequence of modelled periods following mean normalisation,
for a particular draw for Cranwood Feeder 4

The combined data set, following normalisation across all periods, is shown in Figure 4-9, with a Gamma
distribution overlaid in black27. This Gamma distribution is defined by a shape parameter ݇ and a scale
parameter .ߠ

Figure 4-9: Pooled, mean-normalised histogram and PDF for winter afternoon and evening sequence, for
a particular draw for Cranwood Feeder 4

The histogram and fitted model of the exceedance probability is shown in Figure 4-10. The red histogram
counts the number of data points that are equal to our larger than each value of demand, while the black
line shows how this exceedance probability would be described by the gamma distribution

27 In this case, it appears that this sequence might have been possible to characterise with a normal distribution.
However, the gamma and Weibull distributions are much more flexible in terms of the shapes that they can
accommodate, and can fit data which is heavily “skewed”, which a normal distribution cannot do.
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Figure 4-10: Pooled, mean-normalised reverse cumulative histogram and exceedance probability for
winter afternoon and evening sequence, for a particular draw for Cranwood Feeder 4

To recover the distributions for each individual period, we rely on the special property of Gamma
distributions, that both their mean	ߤ and their standard deviation vary linearly with the scale parameter ߪ
:ߠ

ߤ = ݇	 × ߠ ߪ = √݇ 	× ߠ

Therefore, we can recover the means (and standard deviations) for each individual period by transforming
the scale parameter, essentially undoing the normalisation step taken previously.

௉௘௥௜௢ௗߠ = ௌ௘௤௨௘௡௖௘ߠ ×
݊ܽ݁ܯ	݀݋݅ݎ݁ܲ
݊ܽ݁ܯ	݁ܿ݊݁ݑݍ݁ܵ

By repeating this for all sequences of periods in all four seasons, 192 probability distributions are found
which describe the demand of this group of customers during all 48 time-periods in each of the four
seasons. These distributions are a mix of Gamma and Weibull, depending on how the sequences are
defined.

This model is described in more detail in [Appendix A]. In the appendix, we define a new parameter
Λ = ௉௘௥௜௢ௗ	ெ௘௔௡

ௌ௘௤௨௘௡௖௘	ெ௘௔௡
 for Gamma sequences, and an equivalent Γ for Weibull sequences. We have continued

to use the statistical convention of representing uncertain variables with capitalised characters as in the
Bayesian model these multiplicative (and for the Weibull sequence, additive) parameters are also
uncertain.

4.2.1.3 Exceedance expectation
The final stage of the demand modelling is to calculate exceedance expectations for every level of demand.
The exceedance expectation is the average number of half-hours in a year for which the total demand from
a  group  of  customers  is  expected  to  be  equal  to  or  larger  than  any  value  of  demand.  This  is  similar
conceptually to a “load duration curve”.

The demand exceedance expectations are found by:

1. Evaluate survival functions:

For each probability distribution, the “survival function” of the distribution is evaluated at every level of
demand. This gives the probability of each level of demand being exceeded on each half-hour within one
day.  Figure 4-11 shows an example survival  function,  for  period 36 (17:30 –  18:00)  in  winter.  This  shows
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that,  for  example,  there  is  around  a  20%  chance  that  demand  will  be  equal  to  or  higher  than  40  kW  in
winter during period 36 (the half hour between 17:30 and 18:00).

Figure 4-11: Survival function example

Figure 4-12 shows the result of evaluating the survival functions for each period (for the same group of 42
customers) at various levels of demand.

This shows that, for example, the probability of exceeding 0 kW is always 100%, irrespective of time and
day and season, whereas the probability of exceeding 40 kW is 0% for most seasons and times of day,
except for a handful of periods in the evenings, where it varies between 0% and 25% depending on season
and time of day. For higher demands, probabilities are higher during the winter season (season 1), as would
be expected, and lower during the summer (season 3).

For 10kW, there is a clear day/night pattern, although, interestingly, there are some periods in winter
afternoons where the chance of having a demand of 10 kW or greater is relatively low compared to the
other seasons. This is illustrated by the red line taking lower values between 08:00 and 16:00 for a demand
of 10 kW.

Figure 4-12: Evaluation of survival function at different values of demand, across time-of-day and
season, for a particular draw for Cranwood Feeder 4
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2. Weighting

Each probability is multiplied by its weighting (i.e. the number of days in each particular season). This gives
the expected probability in terms of half-hours per season per time-of-day of each level of demand being
exceeded during each year during that specific season/time-of-day.

For example, the plot for demand of 30kW shows that there are expected to be around 60 half-hours
within a typical year during which the demand on Cranwood Feeder 4 during 18:00 in winter exceeds
30kW. For the same time during the summer season, this is only expected to occur for around 15 half-hours
per year.

Figure 4-13: Weighted exceedance expectations for each season/time-of-day in half-hours per year, for a
particular draw for Cranwood Feeder 4

3. Aggregating

For each season, the 48 exceedance expectations are added together, and then the values for the four
seasons  are  added  together,  for  each  value  of  demand,  to  give  the  probability  of  each  level  of  demand
being exceeded across an entire year. The aggregation across the seasons for different levels of demand is
shown in Figure 4-14, with the seasons coloured as in the preceding figures (red – winter, green– spring,
blue– summer, purple– autumn). This shows that, for example, over all seasons and times of day in a year,
a demand of 20 kW is expected to be exceeded in around 5,000 half hours each year.

Figure  4-15  shows  the  same  information  as  Figure  4-14  except  with  a  reduced  scale  for  the  y-axis.  This
shows that there is still a non-zero exceedance expectation for higher values of demand such as 40 kW and
50 kW, and that this is highest for winter, then spring, then autumn, and almost zero for summer for 40 kW
or higher.
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Figure 4-14: Aggregating exceedance expectations across seasons, for a particular draw for Cranwood
Feeder 4

Figure 4-15: Aggregating exceedance expectations across seasons, for a particular draw for Cranwood
Feeder 4, with reduced y-axis scale

Figure 4-16 shows the exceedance expectation curve for Cranwood Feeder 4. This is equivalent to Figure
4-14 except:

(i) it is plotted over a continuous range of demand values, rather than just a pre-defined set of
demand values (0 kW, 10 kW etc), and

(ii) it shows the uncertainty associated with fitting the model to 100 different “draws” from the CLNR
database, as described at the start of Section 4.2.1.

(iii) It compares the values from the raw CLNR data with the statistical model that we have developed.
The statistical model is shown in red, while the values from the original sampled CLNR data are shown in
blue.
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The shaded range around each line is the standard deviation of the exceedance expectation for each level
of demand, across all 100 draws from the CLNR data. This accounts for the fact that each of these 100
draws will  results  in  a  different  model  being fitted.  This  shows that,  for  a  given level  of  demand,  there is
uncertainty about exactly how frequently that level of demand will be exceeded28. These are produced due
to the sampling-based approach we have taken to approximating the Bayesian posterior predictive
distribution. They would not be a necessary output of the actual modelling, but we have retained them in
the discussion of the results as they further illustrate the uncertainty that our proposed method is
accounting for.

Plotting these curves on a logarithmic scale gives a clearer view as to what the model is predicting with
respect  to  peak  demands.  This  is  shown  in  Figure  4-17.  The  model  predicts  that  a  demand  of  60  kW  is
expected to be exceeded on average around once every ten years (because the value of the red line at
60 kW is 0.1).

The curves are “flat” up until about 5kW. This is because 5 kW is the minimum demand that will ever be
observed from this group of customers.

The model provides a reasonably good fit to the CLNR data, over the whole range of values of demand. The
fit  is  not  quite  so good for  intermediate  values  of  demand (10 to  20 kW),  which could be because of  the
Weibull sequences (which assume that standard deviation is constant across the sequence). This shouldn’t
affect the analysis of peak values.

In  the  “tail”  (e.g.  for  very  high  values  of  demand),  it  is  difficult  to  say  much  about  the  accuracy  of  the
model, as there are very few data points for the model to fit to and CLNR data points to compare to. Values
of 50 kW to 60 kW only occur in some of the draws, and even then, only once or twice across the whole
trial  period.  With  more  data,  it  may  be  possible  to  better  ascertain  whether  the  model  fit  needs  to  be
improved or whether this is a more modelling limitation.

28 For the purposes of the case study, we have further simplified the modelling process summarised in Section 3.2. We
have not gone as far as fitting a second statistical model to the range of distribution parameters (e.g. a multivariate
normal distribution with up to 576 variables – 192 periods with 3 parameters each). Instead, we have directly used the
100 “empirical” fitted distribution parameters in all the subsequent steps of the case study. This significantly increases
the clarity of the analysis without any real loss of insight.
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Figure 4-16: Demand exceedance expectation for 42 customers and 7 unmetered supplies (Feeder 4)

Figure 4-17: Demand exceedance expectation for Feeder 4, logarithmic scale

The modelling of the more extreme values of the “tail” could in principle be further improved using
“extreme value theory”, which can enable more robust modelling of the extreme values of a dataset. Such
approaches are taken in other sectors such as insurance, finance, and hydrology. However, this might not
be possible to integrate with the time-of-day/seasonal approach model studied in this report – for example,
the time/season dependency might be used for demands up to 40kW, beyond which extreme value theory
would be used to fit a “tail” model to describe the higher demands across the whole year. Any application
of extreme value theory would probably require data sets covering a longer period of time to be available.
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As  described  in  4.2.1.1,  the  presence  of  SMETS2  can  be  simulated  by  “fixing”  some  of  the  CLNR  profiles
when sampling. Figure 4-18 shows the results of this for Feeder 1, which has 92 customers29. The blue line
has 61 of the profiles fixed, to represent having 61 SMETS2 meters (i.e. around 2/3 penetration).

Figure 4-18: Feeder 1 exceedance expectation, showing change with SMETS2 data

When there are known demand profiles as part of the group, then the uncertainty in the modelled demand
reduces. In a full Bayesian implementation, this would correspond to a reduction in the variance of the
posterior distributions of the parameters after incorporating smart meter data. This is why the area around
the line (which is illustrating the impact of the parameter uncertainty) “tightens” for the blue line
compared to the red. In addition, the estimate of the exceedance expectation for each level of demand
shifts  –  for  example,  in  this  illustrative  case,  for  a  one-in-ten-year  event,  without  SMETS2  data  it  is
~125  kW,  and  with  it,  it  is  ~137.5kW  -  although  it  is  still  reasonably  close  to  the  original  estimate
(approximately 1 standard deviation away from this central estimate).

Similar curves for all six feeders, without and “with” SMETS2 data, are shown in Figure 4-19.

29 The figure is “zoomed” in on the range 50 – 200 kW, to show the curves shifting.
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Figure 4-19: Demand exceedance expectation curves for all six Cranwood feeders

4.2.2 Network response
The second stage in the case study is to determine (approximately) how the network will respond to
different patterns of customer demand30. There are three stages to this:

1. Datasets are pulled from the CLNR datasets to represent customer demand for a range of
conditions. These are referred to as “trial” datasets. There is no statistical significance placed on
this demand data – all that matter is that it is “credible” i.e. it represents a combination of possible
values of demand that could feasibly occur on the network. For the example, we have used 2,000
data points – 1,000 with very high demand and 1,000 with very low demand. This is a large enough
number to provide some confidence in the output of the regression testing, but isn’t overly
onerous for modelling in IPSA.

2. The customer demand trial datasets are run through IPSA to analyse voltage and thermal impacts in
each case.

3. Regression tests are run on the trial data and IPSA outputs in order to find simple equations which
describe the response of the network.

30 A full implementation of the model would also consider the response to embedded generation.
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4.2.2.1 Trial data
Demand “trial  data”  is  passed into the IPSA model  in  order  to  enable  us  to  estimate how the model  will
respond to other sets of customer demand, without having to actually run these through a power systems
model. There is therefore no statistical significance attached to the trial data – however it is important that
the thermal and voltage conditions which will arise because of these inputs are credible, and that the trial
data covers a wide enough range of credible data.

This data is generated in a similar manner as described in Section 4.2.1.1, except with three differences:

1. Since we place no statistical significance on the demands, there is no need to repeat the sampling
for multiple draws.

2. We  extract  1,000  samples  with  high  aggregate  demand,  and  1,000  samples  with  low  aggregate
demand from the previous sampling exercise – we are only interested in the values of the demands
and the impact they have on the network, and not the season or time of day they are associated
with.

3. We are now interested in the “disaggregated” profiles of individual customers so that these can be
modelled at individual customer nodes within IPSA – rather than just the aggregated demand.

Since Cranwood has a total of 611 customers, the form of the trial data is a table with 2,000 rows (1,000
high demand and 1,000 with low demand) and 611 columns (one for each customer).

As before, 100W is used for unmetered supplies.

4.2.2.2 Running IPSA trials
The trial data customer demand profiles are automatically loaded into the Cranwood unbalanced IPSA
model using a script, and then an unbalanced load flow is executed for each of the 2,000 samples. The
model also defines which phase each customer is connected to.

The script records the total kVA utilisation of each branch in the model, as well as the individual red, blue
and yellow phase voltages at every busbar. This is illustrated in Figure 4-20.

Figure 4-20: Summary of process for fitting IPSA regression models.

4.2.2.3 Regressions
The aim of the regression testing is to determine simple equations which can approximate the outputs of a
full, iterative load flow. In this project, it has been sufficient to use single variable linear equations –
although, in practice, more complicated and sophisticated methods might be required. These equations use
demand as the “independent variable” and either thermal utilisation or voltage as the “dependent
variable”.

The total demand on each feeder is aggregated together in order to return single variable regressions – this
simplifies  the method in  that  it  allows us  to  avoid  using much more complex  multi-variate  statistics.  This



Smart Network Design Methodologies  Novel analysis techniques at low voltage 67/103

means that, for example, thermal loading will take the form of ݕ = ݉ × ݔ + ܾ (where is thermal loading ݕ
and is the sum of aggregate demand) rather than ݔ ݕ = ܾ +݉ଵ × ଵݔ +݉ଶ × ଶݔ +݉ଷ × ଷݔ …  (where ௜ݔ is
the sum of demands for the nodes within group ݅).

We envisage that a future modelling tool would “scan” the network as part of the model-build phase, in
order to inform how to produce these regressions, and to highlight the branches and the nodes that are the
most at risk. This might involve identifying the branches of each feeder which are the most heavily loaded
or the nodes which have the highest and/or lowest voltages.

For the purposes of this case study, we have restricted the analysis to consider the first branch of each
feeder at the secondary transformer, and a single node near the end of each feeder. These branches and
nodes are listed in Table 4-2

The regressions for thermal utilisation (i.e. the kVA or kA circuit loading in per unit of rating) are shown in
Figure 4-21. Utilisation accounts for the losses and reactive power associated with the demand (kW) on the
network.

Table 4-3 lists the slope and intercept of these linear equations, as well as their R2 scores (where R is the
coefficient of correlation), which measures how well the linear equation models the results for utilisation31.
As the R2 values show, these equations explain almost all of the variation in utilisation, based on only the
sum of downstream demand on the feeder.

Table 4-3: Regression results for six Cranwood feeders, thermal

Feeder Slope Intercept R2

Feeder 1 0.0046 -0.0025 1.0000

Feeder 2 0.0046 -0.0040 1.0000

Feeder 3 0.0045 -0.0024 1.0000

Feeder 4 0.0045 -0.0006 1.0000

Feeder 5 0.0044 -0.0012 1.0000

Feeder 6 0.0035 -0.0014 1.0000

31 To be more precise, the R2 score describes the proportion of the variance in utilisations which can be explained by
the aggregate demand on the feeder
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Figure 4-21: Regressions for thermal utilisations of first sections of Cranwood feeders

The regressions for red, blue and yellow busbar voltages are shown in Figure 4-22. For each node assessed,
there are three separate sets of data points, and lines, representing each of the voltage phases.
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Figure 4-22: Regressions for phase voltages of the ends of Cranwood feeders

Table 4-4 lists the slope and intercept of these linear equations for voltage (of the form of ݕ = ݉ × ݔ + ܾ
where is nodal voltage and ݕ is the sum of aggregate demand), as well as their R2 scores. The “goodness ݔ
of fit”, in terms of R2

, is qualitatively assessed using red, amber and green colours in this table, to highlight
which have better and poorer fits. Both the figure and the table show that feeder demand explains a
significant  amount  of  the  variation  in  voltage,  however,  it  is  clear  that  there  are  variations  that  are  not
explained purely by the total demand. This is because voltage at the end of the feeder depends not only on
the demand on the feeder, but also on how that demand is distributed along the feeder.

The secondary transformer was modelled with a locked tap changer, with the high voltage busbar set to
have a constant voltage of approximately 1.08pu, although in practice the transformer tap changer would
be set to give a -2.5% buck.
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Table 4-4: Regression results for six Cranwood feeders, voltage

Feeder Node Ref Slope Intercept R2

Feeder 1 100171386

-0.0008 1.0784 0.9402

-0.0004 1.0812 0.9411

-0.0005 1.0805 0.9401

Feeder 2 100152251

-0.0004 1.0798 0.9716

-0.0004 1.0802 0.9687

-0.0003 1.0805 0.9692

Feeder 3 100173740

-0.0004 1.0806 0.9536

-0.0006 1.0797 0.9691

-0.0002 1.0791 0.9618

Feeder 4 100149279

-0.0010 1.0800 0.9368

-0.0006 1.0798 0.8655

-0.0007 1.0803 0.9058

Feeder 5 100152853

-0.0002 1.0797 0.9596

-0.0002 1.0804 0.9541

-0.0001 1.0801 0.9235

Feeder 6 100153721

-0.0005 1.0782 0.9473

-0.0004 1.0803 0.9641

-0.0004 1.0812 0.9427

For  example,  for  “samples”  where  more  demand  is  clustered  at  the  end  of  the  feeder,  this  will  result  in
even lower voltages, but where more of the demand is clustered near the distribution substation, voltage
drop will be less. In the future, a multi-variable regression could be used to further improve the accuracy of
these regressions (and therefore increase the R2 value) e.g. to represent varying voltage on the LV side of
the distribution transformer busbar as the aggregate demand increases.

4.2.3 Probabilistic network condition
The final stage of the case study is to combine the probabilistic demand model with the characterisation of
the network response, in order to determine the probabilistic network condition.
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In these results, we have presented far more information that we expect would typically be provided for a
LV designer in their day-to-day activities. We have highlighted the results that we expect would typically be
provided.

4.2.3.1 Thermal utilisation
Applying the regression equations in Table 4-3 to the exceedance expectation functions in Figure 4-19,
returns the thermal utilisation exceedance expectations shown below in Figure 4-24. This is the same as the
final step set out in Figure 3-13, which is reproduced below for ease of reading. With the demand curve (2)
and the regression line (3) known, we can read off for every level of utilisation (4) the demand associated
with this level of utilisation, and therefore, the probability associated with it (5).

Figure 4-23 Step 5: Probability of demand level

These show the number of half hours in each year that the thermal utilisation of the first branch of each
feeder will  exceed a certain level (expressed in terms of per unit on kVA rating). Again, the average of all
100 samples is shown, with a shaded area to illustrate the variability around this average.

For most of these feeders, the 1.0 per unit utilisation is reached at well below an exceedance expectation
of 0.001 – e.g. 1.0 per unit utilisation is expected to happen less frequently than once in every ten thousand
years. However, for Feeder 2, the exceedance expectation of the feeder rating is around 0.1 – this circuit is
therefore at risk of overload. This is to be expected, given this feeder has the most customers connected.
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Figure 4-24: Thermal utilisation exceedance expectations for feeders

The risk for this feeder can be better understood by examining the histogram of exceedance expectations
for the 1.0 per unit utilisation, which further illustrates the impact of the parameter uncertainty. This can
be thought of as taking a vertical slice of the curves in Figure 4-24, along the point where utilisation is equal
to 1.0pu. These histograms are presented in Figure 4-25.

It can be seen that the exceedance expectations are, approximately, log-normally distributed (i.e. the
natural logarithm of the exceedance expectation is normally distributed). This means that the distribution
of  exceedance  expectations  is  heavily  skewed,  with  a  long  right  tail  –  i.e.  the  median  is  lower  than  the
mean. Plotting this skewed data with a logarithmic scale returns data which is approximately normally
distributed.

In addition, the effect of the SMETS2 data is clear – the distribution of sampled values shifts (in this case, to
the right) and it also tightens. This means that, the increased information about the customers on this
feeder has (i) informed us that they actually have slightly higher than typical demands and (ii) reduced the
uncertainty in the parameters that inform this estimate.
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Figure 4-25: 100% of rating exceedance expectation for Feeder 2

We can double check our interpretation of the results by plotting a violin plot of the results for each feeder.
Figure  4-26  plots  the  utilisations  for  each  feeder,  with  and  without  simulated  SMETS2  data,  for  an
exceedance expectation of 0.1 (i.e. once in every ten years). As expected, the one-in-ten-year utilisation for
Feeder 2 is around 1.0pu, whereas for all the other feeders, it is comfortably lower.

Figure 4-26: One-in-ten-year utilisation

Table 4-5 presents some summary statistics of the 1.0pu exceedance expectation for Feeder 2. It is notable
that when the SMETS2 data is simulated, the coefficient of variation (which is the standard deviation
divided by the mean) is almost halved, and that the 90% range (between the 5% and 95% value) narrows.
To remind the reader, the mean values here are approximations of the Bayesian prior and posterior
predictive distributions. The 5% value simply means the 5th largest sampled value (as there were 100
samples),  while  the  95%  value  is  the  5th smallest sampled value, with these measures of variation only
provided to illustrate the impact of the parameter uncertainty

Table 4-5: Summary of 100% thermal utilisation exceedance expectation for Cranwood Feeder 2

Variant Mean
(hh-per-year)

Standard
Deviation

(hh-per-year)

Coefficient of
Variation

5% Value

(hh-per-year)

95% Value

(hh-per-year)

No SMETS2 0.233 0.350 1.501 0.024 0.748
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Variant Mean
(hh-per-year)

Standard
Deviation

(hh-per-year)

Coefficient of
Variation

5% Value

(hh-per-year)

95% Value

(hh-per-year)

data

“With” SMETS2
data

0.249 0.175 0.702 0.065 0.593

We  expect  that  the  information  in  Table  4-5  is  the  sort  of  information  that  could  be  provided  for  a  LV
designer. In practice, they would probably only be provided with the mean, which is the approximate
predicted value for the exceedance expectation. The value of 0.233 half-hours per year means that
exceedance of this rating is a 1-in-4-year event.  The range represented around this reflects the uncertainty
in the parameters, in a manner we believe is more intuitive than the Bayesian convention. Such values
could identify to a planner circuits where there is the most significant uncertainty about the variation in
customer demand. This may be helpful when making decisions about the deployment of monitoring, for
example. However, this variability is already accounted for in the calculation of the mean of 0.233, as
described in Section 2.3.3.

We expect that NPg would need a policy to dictate what actions should be taken with different levels of risk
for example, a mean exceedance expectation of greater than 0.1 might require some type of intervention,
whereas  a  mean  of  less  than  0.1  with  a  95th percentile  value  of  greater  than  0.5  might  mean  that
monitoring is required.

4.2.3.2 Voltage
Similar results are produced for the network voltages, by applying the equations in Table 4-4 to the x-axis of
the curves  in  Figure 4-19.  The voltage on each phase of  each feeder  would be lower  than these voltages
once in every ten years on average in the long run, for a given sample. The violin plots show the distribution
of results across all 100 samples.

However, for Cranwood, the transformer turns ratio mean that none of the feeders are at any significant
risk of an undervoltage. The one-in-ten-year low voltages are presented in Figure 4-27, showing that all of
them are significantly higher than 0.94 per unit (which is the lower voltage statutory limit). These are the
voltages that arise due to periods of high demand, and will be closely linked to the one-in-ten-year high
demand.
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Figure 4-27: One-in-ten-year low voltage

4.2.4 Adjusted secondary voltage
In order to more comprehensively demonstrate the possible outputs of the method for voltage, we have
examined a scenario where the secondary voltage of the transformer at Cranwood is changed from 433V to
416V32.  This might be implemented as, for example, part of a general LV policy for modifying networks to
accommodate more small-scale solar PV, which could otherwise lead to voltage rise on LV networks.

The deceedance33 expectation curves for each phase on all  six feeders, following the reduction in the tap
setting, are shown in Figure 4-28. Visual inspection suggests that there is a risk for the node on red phase of
feeder 1, given the position of the exceedance expectation curve at 0.94pu voltage is close to 1 half-hour
per year. The other feeder nodes appear to be still safe from the risk of undervoltages.

Summary statistics for the 0.94pu deceedance expectation of the studied node on the red phase voltage of
Feeder 1 are presented in Table 4-6. As before (Table 4-5), the values are log-normally distributed, such
that the distributions are skewed and the median value is less than the mean. The coefficient of variation
decreases and the 90% range narrows with the presence of the SMETS 2 data.

Table 4-6: Summary of 0.94 pu voltage deceedance expectation for Cranwood Feeder 1, with 416V no-
load secondary voltage setting

Variant Mean Standard Coefficient of 5% Value 95% Value

32 For the purposes of this illustrative case study, we haven’t specified exactly how this is achieved but it could be
achieved by setting the transformer tap changer to reduce the target voltage.
33 We use term “deceedance” to describe under voltage conditions and exceedance to describe over voltage
conditions.
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(hh-per-year) Deviation

(hh-per-year)

Variation (hh-per-year) (hh-per-year)

No SMETS2
demand data

0.487 0.757 1.553 0.019 1.516

“With” SMETS2
demand data

1.465 1.047 0.714 0.547 3.589

This means that for Cranwood Feeder 1, voltages lower than 0.94 pu are expected in the long-run once
every two years (corresponding to the value of 0.487 half-hours per year)

Figure 4-29 and Figure 4-30 show violin plots of, respectively:

(i) the deceedance expectation of 0.94 per unit, and

(ii) the one-in-ten-year low voltage.

These confirm that the only feeder with any pronounced risk is Feeder 1, specifically on the red phase. This
is  due  to  the  very  significant  phase  imbalance  on  Feeder  1,  as  can  be  observed  in  the  position  of  the
regression lines in Figure 4-22.
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Figure 4-28: Low voltage utilisation deceedance expectations, with reduced secondary voltage
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Figure 4-29: 0.94 lower voltage deceedance expectation, with reduced secondary voltage

Figure 4-30: One-in-ten-year low voltage, with reduced secondary voltage
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4.3 Sinderby case study
The steps described in Section 4.2 were also repeated for the Sinderby LV network model. The Sinderby
network has been built in IPSA based on data contained in eAM Spatial.

Sinderby supplies a total of 55 domestic and non-domestic customers as well as 10 unmetered supplies, on
two  feeder  circuits.  As  with  Cranwood,  data  is  not  available  on  the  exact  split  of  domestic  and  non-
domestic customers. The North Feeder is rated at 232 kVA and the South Feeder at 301 kVA.

A description of the two feeders is provided in Table 4-2, including a breakdown of customer connections
by phase.

Table 4-7: Description of two Sinderby Feeders

Feeder Customers Unmetered
supplies Rating Branch Busbar Ref

North Feeder 18 4

232 kVA 141107475_1 137956470
Red Phase 5 4

Yellow Phase 6 4

Blue Phase 11 4

South Feeder 37 6

301 kVA 141107463_1 138026433
Red Phase 23 6

Yellow Phase 7 6

Blue Phase 13 6

The  400V  network  is  supplied  by  an  11  kV  to  433  V  transformer.  This  means  that  the  nominal  no  load
voltage at the secondary busbar is typically at around 1.0825 per unit.

4.3.1 Probabilistic model for demand
The demand model is determined using the same steps as set out in Section 3.2 and demonstrated for
Cranwood in Section 4.2.1. Although the numbers of customers are different, the steps taken are exactly
the same, and are therefore not presented in full again for Sinderby.

The exceedance expectations for demand from this model are shown in Figure 4-31. For Sinderby, it is
necessary to model the demand individually for each phase, as described in the next subsection.
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Figure 4-31: Demand exceedance expectation curves for all Sinderby feeders and phases
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4.3.2 Network response
The response of the branches and busbars in Table 4-7 is determined in the manner described in Section
3.3 and demonstrated for Cranwood in Section 4.2.2.

All of the regression equations, and their R2 values are listed in Table 4-7, with the regressions plotted in
Figure 4-32 and Figure 4-33 for thermal and voltage respectively.  The regression equations provide a less
good fit (in terms of R2) for Sinderby than for Cranwood for voltage, suggesting that this might be a network
where a multi-variate regression is required.

Note that we are not forcing the regression lines to take any specific value at demands of 0 kW. This means
that, for demands of 0 kW, the results will differ slightly from the actual voltages in the network – which we
would expect to all be equal to ~1.08pu on all three phases. However, doing this would result in a poorer fit
for the model at the demand levels in which we are interested – therefore, it is considered acceptable to
have  a  slightly  less  accurate  model  for  0  kW  since  it  results  in  greater  accuracy  for  higher  levels  of
demand34.

Figure 4-32: Regressions for thermal utilisations Sinderby feeders

Figure 4-33: Regressions for phase voltages of notes at the end of Sinderby feeders

34 When assessing cases where there is embedded generation, it would also be necessary to consider low demand and
high generation trials as part of this analysis.
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Table 4-8: Regression results for two Sinderby feeders

Feeder Constraint Phase Branch/node Slope Intercept R2

North Thermal Three-phase 141107475_1 0.0045 -0.0001 1.0000

North Voltage Red

137956470

-0.0006 1.0800 0.8463

North Voltage Yellow -0.0005 1.0801 0.8189

North Voltage Blue -0.0006 1.0799 0.9432

South Thermal Three-phase 141107463_1 0.0039 -0.0098 0.9947

South Voltage Red

138026433

-0.0003 1.0780 0.9104

South Voltage Yellow -0.0004 1.0801 0.7397

South Voltage Blue -0.0006 1.0803 0.9839

For Cranwood, it was possible to find equations to describe the single-phase voltages which depended on
the total demand across all of the phases on the feeder. However, for Sinderby, this resulted in a very low
R2 scores. We have not presented all of these here, but as an example, for the yellow phase voltage on the
south feeder the R2 was only 0.23, whereas it is 0.74 when using separate demand models as shown in the
table. This is likely due to the significantly lower number of customers connected to the LV feeders in the
Sinderby network, reducing diversity on each phase. This informs the future approach and how it might be
best applied to a wide range of network types and topologies. This is illustrated in Figure 4-34.

Figure 4-34: Regressions for phase voltages of Sinderby feeders, against total feeder demand

As a result, Sinderby needs to have separate models for the demand on each phase, rather than a single
model describing the total aggregate demand across all phases.

4.3.3 Probabilistic network condition
The  probabilistic  network  condition  was  determined  as  it  was  for  Cranwood  in  Section  4.2.3.  However,
because customer demand is so low relative to the ratings of the assets and the impedances of the
branches, the thermal exceedance and voltage deceedance expectations are effectively zero in all cases,
meaning there is no real risk of either voltage excursions or thermal overloads.

The 1-in-10-year utilisations and voltages are plotted in Figure 4-35 and Figure 4-36. These show that even
for  relatively  extreme  values  of  demand,  utilisation  is  still  well  below  100%  and  voltages  are  still  much
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higher than 0.94 per unit. Nevertheless, this case study further demonstrates application of the novel
analysis approach to assess LV network thermal loading and voltage.

Figure 4-35: One-in-ten-year utilisation

Figure 4-36: One-in-ten-year low voltage
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5 Next steps
In this report, we have described the context for our novel analysis techniques for probabilistic assessment
of low voltage networks, and developed and demonstrated the foundations of a methodology to achieve
this. This method could now be adopted for implementation when analysing simple LV networks in the
absence of significant volumes of LCTs. However, there are some areas which need to be considered in
more detail for implementation, and further developments that would be required in the future to ensure
that this method is robust enough to work with more complex networks and can be used to model LCTs.
These potential future developments are described in this section.

5.1 Implementation
5.1.1 Acceptable levels of risk for low voltage networks
This report has focused on how to calculate probabilistic representations of network demand and how to
use these to assess the risk of certain network conditions. We have calculated “exceedance expectations”
in terms of the numbers of half-hours per year (or perhaps more meaningfully, expected rate or occurrence
in years) for which network assets have voltages outside of their limits or cables and transformers exceed
their thermal ratings.

However, we have not made any recommendation as to what sort of levels of exceedance expectation
might prompt a DNO to invest in the network. However, we have, in places, put more emphasis on the 1-in-
10-year demand, on the basis of ACE49 considering the 90th percentile of demand. For reference, planning
of the gas transportation system, the licence requires that the system is designed for a 1-in-20-year
demand, derived based on at least 50 years’ data.

In principle, acceptable levels of risk should be determined on the basis of the trade-off in cost and benefit
between network investment, and outage risk. Essentially, this corresponds to trading off the cost of
investment with the cost of customer interruptions and customer minutes lost.

This is illustrated in Figure 5-1 – as the network is designed for more extreme levels of risk, the capital cost
of meeting these requirements will be greater, as this will require higher rated assets or more extensive
works. However, at the same time, the risk of exceeding these asset ratings will decrease, which means the
cost  of  this  risk  (in  terms  of  lost  load)  will  decrease.  The  total  minimum  cost  is  therefore  achieved  by
designing for a level-of-risk which minimises the total of these two costs. In this illustrative example, this is
the 1-in-10-year demand, which strikes the optimal balance between capital cost and cost of risk.
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Figure 5-1: Illustration of trade-off between capital cost and cost of risk

Designed level of risk (half-hours per years)

1-in-10 1-in-100010-in-1

Cost (£)

Cost of risk/lost load

Capital cost

Total cost
Minimum
total cost

In principle, this could be determined on a case by case basis, accounting for specific local variation in the
value of lost load. However, this is unlikely to be possible in practice, and it is more likely that generically
appropriate levels of risk would have to be determined and defined within LV network planning policies.

5.1.2 Aggregation of smart-meter data
Aggregation of individual customers’ smart meter data could have implications for the future
implementation of the approach set out in the report. This could require some additional development
beyond the scope of this project, depending on the final functional requirements of the modelling tool.

In the event that data is required at a lower level of aggregation than is allowed by Ofgem, e.g. if there are
2 isolated customers at the end of a long feeder cable, but the smallest level of aggregation for which DNOs
are allowed access is e.g. 3, then the problem can be resolved by only calculating and extracting histograms
of  the  aggregated  demand  of  the  two  customers,  as  the  raw  data  is  not  actually  required  to  estimate
parameter values to a reasonable approximation. Instead, a synthetic series could be sampled from the
histogram, by assuming that all values within the range of each histogram box is equally likely.

Another potential option would be for the algorithms which produce the demand models to operate on the
disaggregated data within the secure data store, so that NPg never has access to this data directly, but can
still realise the possible benefits of disaggregated data when fitting the demand models. This could
potentially have implications for the existing IT systems that will be used to store the smart meter data.

5.1.3 Partial penetration of smart meters
The process for Bayesian updating set out in this report assumes that the variable which is being
statistically  modelled  –  that  is,  demand  on  a  feeder  –  is  the  same  as  the  variable  for  which  we  have
measurements. However, even once the smart-meter rollout is complete, this is unlikely to be the case for
the vast majority of the networks, with an overall penetration of smart meters expected to be materiality
less than 100%.

Therefore, it is necessary to consider how smart meter data can be used for updating the Bayesian model in
this situation, where the measured variable and the modelled variable are not the same. A detailed
mathematical  exposition  of  this  is  set  out  in  Appendix  A.1.2.  Essentially,  this  sets  out  the  necessity  of
forming a statistical relationship between the parameters that characterise the distribution of the modelled
aggregate demand variable of interest, and the parameters that characterise the distribution of the
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aggregate demand variable for which measurements happen to be available. This could be done by fitting
models for a group of ܰ customers,  then  fitting  the  model  for  a  group  of ܰ customers (where the ܯ−
ܰ are part of the original group of ܯ− ܰ), and then finding the statistical relationships between these two
sets of parameters.

5.2 Further developments
5.2.1 Accounting for low carbon technologies
In this report, we have described a model which finds probability distribution parameters for different
numbers of customers, ܰ. We have demonstrated this generically, without differentiating between
different customer categories, although in practice this could be achieved using existing data.

In order to use this method to forecast future scenario demands, it would be necessary to also account for
the future adoption of LCTs such as EVs, heat pumps and solar PV. We envisage that LCTs will just extend
this to find distributions for groups of customers and LCTs, ௜ܰ, where ݅ is an index over different types of
technology (EVs, HPs, PV etc) and customers. For example, a group of domestic customers on a feeder with
40 customers, and a 20% penetration of EVs, would use the distribution hyperparameters for ஽ܰ௢௠௘௦௧௜௖ =
40, ாܰ௏ = 8. These distribution hyperparameters would have to be determined in a manner which robustly
accounts for the interactions between different LCTs

It is unlikely to be efficient to determine unique parameters sets for all possible combinations of customer
categories and LCTs, before those combinations happen to occur in an LV circuit. For example, for groups of
up to 100 customers with up to 100 EVs and up to 100 HPs, there would be 1003 = 1,000,000 possible sets
of hyperparameters covering all of these different combinations.

Machine learning methods are likely to offer the best type of solutions to deal with this problem..
Hyperparameters could be determined by fitting statistical models for 1,000s of different combinations of
customers  and  LCTs.  This  could  be  used  as  training  data  for  a  machine  learning  regression,  which  would
enable a DNO to accurately predict the hyperparameters for combinations which have not yet been fit. For
example,  after  fitting  a  model  for  10  customers  with  5  EVs,  and  10  customers  with  7  EVs,  it  is  not
unreasonable that we could accurately predict the model for 10 customers with 6 EVs.

There are some outstanding challenges associated with this approach which need to be considered, and are
not yet entirely resolved. These would not prevent the development of initial versions of the tool, although
it might lead to LCTs being more simply represented to begin with. These challenges are described below.

5.2.1.1 Limited LCT data
In many cases, there is surprisingly little information available in the public domain to provide a thorough
understanding of LCT demand. From a brief review, LCT datasets often possess one or more undesirable
features, including:

· Monitoring of a relatively short time period: In  the  case  of  the  CLNR  EV  datasets,  these  were
monitored for less than whole year and only included one winter.

· Limited customer numbers: CLNR includes around 100 EV profiles, which is far less than the 8,000
domestic customer profiles provided.

· Interventions: Many datasets for LCTs have been gathered in innovation projects, which have also
been concerned with studying the impacts of various smart interventions on managing the impacts
of these LCTs. These profiles will not give a good indication of the impact of LCTs, unmitigated, on
electricity networks.

· Early adopters: There is  a  risk  that  existing  LCT profiles  only  reflect  the consumption patterns  of
early adopters, and that these could be very different to the patterns of other types of consumer.
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In general, these factors provide compelling reasons for treating LCT demand with a Bayesian approach,
due to the general limitation in data. However, the model might need to make assumptions in order to
achieve this. For example, it  may be necessary to assume that, for any given season and time-of-day, the
probability distributions for underlying domestic demand and LCTs are completely independent. Some of
the most promising machine learning methods currently being utilised in other sectors involve combining
neural networks with Bayesian inferencing to form ‘Bayesian deep learning’, and such methods may well be
the best choice for the current application.

5.2.1.2 Locational dependency
There is potentially a strong locational dependency for certain types of LCT, in particular solar PV or other
types of small scale weather-based generation. Demand and solar PV output are both strongly dependent
on  weather,  and  therefore  there  is  likely  to  be  a  correlation  between  them.  If  this  correlation  isn’t
accounted for, then it is likely that the outputs of any modelling of PV would lead to inaccurate results.

It is also possible that, due to similarities in customer circumstances and behaviour, there would be strong
correlations in the demand for other LCTs (such as EVs) for customers in a specific small local area, e.g. that
might be served by a single LV network. To gain an understanding this would require datasets which
measure EV demand for such a specific local area e.g. professional families with EVs served by a single LV
feeder.

5.2.1.3 Uncertainty in LCT numbers and ratings
It  is very likely that, particularly during earlier stages of adoption, DNOs will  not know with certainty how
many LCTs of certain types are present on a specific LV network. They certainly won’t be able to say exactly
how many LCTs will be on a specific network in the future. Therefore, it is possible that the model will have
to reflect uncertainty in the numbers and types of LCTs, as well as uncertainty around the patterns of
consumption for those LCTs. It might be possible to address this using a “mixture model”, which is
essentially a weighted sum of probability distributions. For uncertain numbers of LCTs, this might take a
form similar to:

(݀݊ܽ݉݁ܦ)ܨ = ෍߶௜ × (Θ|	݀݊ܽ݉݁ܦ)௜ܨ
௜

In this formulation, ߶௜  is the probability that there are ݅ LCTs, and is the probability (Θ|	݀݊ܽ݉݁ܦ)௜ܨ
distribution of demand for ݅ LCTs, with uncertain parameter set Θ.

5.2.2 The multi-variable case
As described throughout this report, there are cases where there isn’t a single aggregation demand variable
which explains the utilisation of an asset, or the voltage at a node, to an acceptable degree of accuracy. For
example, when modelling the voltage at the end of a feeder, it may be that this is best understood by
splitting demand into two groups: demand closest to the transformer and demand furthest from the
transformer. In most cases, simple multivariate linear or quadratic equations should be sufficient to
understand this, for example, for the case described above:

ܸ = ଴ߚ + ଵߚ ∙ ଵܦ + ଶߚ ∙ ଶܦ
It would be relatively easy to extend this to more than two groups of aggregated demand.

Multiple groups of aggregate demand present no new challenges for the modelling of the network
condition. However, it then becomes necessary to consider statistical dependence between demand ଵ forܦ
customer group 1 and the demand ,ଶ for customer group 2. This requires the use of multi-variate statisticsܦ
which significantly increases the complexity of the probabilistic modelling. Instead of single-variable
probability distributions, it is necessary to work with multi-variate distributions.  The simplest possible
multivariate distribution – the joint-Normal distribution, is illustrated in Figure 5-2.
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Figure 5-2: Example of multi-variate probability distribution

Fitting and assessing multivariate probability distributions is complex. One common approach is to fit
separate “marginal” or univariate distributions for the two variables of interest (e.g. demand ଵ forܦ
customer group 1 and the demand ,ଶ for customer group 2), and then join then using a “copula” functionܦ
which are functions that define the dependence between random variables. A common and reasonably
simple option is the Gaussian copula, which requires the probability distributions for the two variables to
be determined separately, as well as their linear correlation. Other, more complex, copula functions could
also be used. Further work would be needed to develop the multi-variate evolution of the model.
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Appendix A – Mathematical formulation
This section sets out a detailed mathematical exposition of the statistical model proposed by TNEI for the
aggregated electrical  demand of  a  group of  customers  on an LV network at  a  given time,  starting  with  a
general introduction to the theory of Bayesian inference. The document will also cover how the model for
individual short periods translate into the statistics of extremes over long periods.

A.1 Mathematical presentation of Bayesian inference
In this section, we set out the principles of Bayesian inferencing in a more precise and detailed
mathematical way than in the main body of the report.

A.1.1 Bayesian updating based on direct observations
In this subsection, we present the process of updating our parameter distributions, and ultimately
predictions about observable quantities, when direct observations of those variables become available. This
contrasts with the case presented in the next subsection, where the observations are of a different, but
statistically related quantity.

We begin with the following definitions:

· ܺ, an observable random variable, taking values This may in fact be a vector of values, e.g. the .ݔ
aggregate demand at multiple nodes on a circuit.

· This is typically a . (߆|ݔ)݌	~	ܺ	.the parameter set of the data point's probability distribution, i.e ,߆
vector of parameters, e.g. mean and variance for normal distributions. The probability distribution
here is very general, and could be discrete, continuous or a combination of both. As this is a
Bayesian model, is itself random, taking values ߆ .ߠ

· .the (deterministic) hyper-parameter set of the uncertain parameter’s distribution, i.e ,ߙ
.Again, this is likely to be a vector of hyper-parameters . (ߙ|ߠ)݌	~	߆

· વ is a sample of observations of ܺ, i.e. a set of ݊ observed data points, i.e., ,ଵݔ … , 	.௡ݔ

Bayesian updating works as follows:

· The prior distribution is the distribution of the parameter(s) before any data is observed, i.e.
This tends to represent our view of the world in the general case, e.g. that coins are likely .(ߙ|ߠ)݌
to be essentially fair, prior to a coin tossing experiment.

· The sampling distribution is the distribution of the observed data conditional on its parameters,
i.e.	݌൫	વ	|ߠ൯. This is the probability of the sample વ occurring, given that their distribution is
characterised by the parameter set taking the particular values ߆ It is convenient to view this as .ߠ
a function of θ rather than વ, since the latter is fixed and known, in which case the quantity is
termed the likelihood L൫ߠห܆൯ = .(ߠ|܆)݌

· The marginal likelihood (sometimes also termed the evidence) is the distribution of the observed
data marginalized over the parameter(s), i.e. ൯ߙ|൫વ݌ = ∫ ߠd(ߙ|ߠ)݌	൯ߠ|൫વ݌	

· The posterior distribution is the distribution of the parameter(s) after considering the observed
data. This is determined by Bayes' rule, which forms the heart of Bayesian inference:

,ࢷ|θ)݌ α) =
൯ߠ|൫વ݌	 ∙ (ߙ|ߠ)݌

൯ߙ|൫વ݌	

· The posterior distribution could also be defined in terms of a new set of hyper-parameters:

,વ|ߠ)݌ α) = (αேୣ୵|ߠ)݌

Essentially, by incorporating new evidence through Bayesian inference, the hyper-parameters of
the prior distribution change, resulting in reduced uncertainty.
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Note these are the prior and posterior distributions of the parameters which define the probability
distribution of the observable random variable, rather than the observable variable itself. The probability ,ݔ
distributions for a realised value or more generally a vector of observations ,ݔ are (that are yet to occur) ݔ̅
known as predictive prior and predictive posterior distributions. These allow statements of the form “there
is a 60% probability that will be between 1 and 2”, or “the expected values of my prediction for ݔ̅ ,is [1.7 ݔ̅
2.3]”. Forecasts that take the form of probability distributions rather than single points are in fact necessary
to make mathematically optimal decisions under uncertainty. The prior predictive distribution is the best
prediction for that can be made before the sample ݔ̅ :has become available, given by ࢄ

(α	|ݔ̅)݌ = න	(ߠ|ݔ̅)݌	݌(ߠ|α)dߠ

The posterior predictive distribution is the best forecast that can be made after :becomes available ܆

,વ	|ݔ൫̅݌ α൯ = න	(ߠ|ݔ̅)݌	݌൫ߠ|વ, α൯dߠ = න	(ߠ|ݔ̅)݌	݌(ߠ|α୒ୣ୵)dߠ

These predictive distributions are optimal since they are marginalised over the prior and posterior
parameter distribution, respectively. That is, averaging across all of the uncertainty associated with the
parameter distributions is conducted correctly.

For convenience, these distributions may be expressed as a series of quantiles, e.g. the 10th, 20th,  …,  90th

percentiles, or as the expected value plus an indication of uncertainty, e.g. the standard deviation, or the
5th and  95th percentiles, giving a 90% interval. Note that these are known as prediction intervals, rather
than confidence intervals.

A.1.2 Bayesian updating based on indirect observations
In this subsection, we present the full mathematical formulation of Bayesian updating for a random
variable ܻ, when observations become available for some other variable ܺ that has a statistical relationship
to ܻ. In this extended situation, we have the following definitions:

· a data point for the (theoretically) observable random variable ,ݕ ܻ, the variable in which we are
ultimately interested. This may in fact be a vector of values, e.g. the aggregate demand at multiple
nodes on a circuit.

· ߮, a realised value of random variable which is the uncertain parameter set of the distribution ,ߔ
of This is typically a vector of parameters, e.g. mean and variance for normal . (߮|ݕ)݌	~	ܻ	.i.e ,ݕ
distributions. The probability distribution here is very general, and could be discrete, continuous or
a combination of both.

· ௬, the (deterministic) hyper-parameter set ofߙ .s distribution, i.e’ߔ ௬൯ . it is likely to beߙ|൫߮݌	~	ߔ
a vector of hyper-parameters.

· a data point for the observable random variable ,ݔ ܺ.  This  is  not  the  variable  in  which  we’re
ultimately  interested,  but  is  relevant  because  we  have  a  set  of  observations  for  it,  to  use  in
updating.  Again,  this  may  be  a  vector  of  values,  e.g.  the  aggregated  smart  meter  consumption
record for a number of customer subsets from the same network (where not all  customers have
smart meters).

· the sample of observations available, i.e. a set of ,ࢷ ݊ observed data points, i.e., ,ଵݔ … , 	.௡ݔ
· a realised value of the random variable ,ߠ which is the uncertain parameter set of the ,߆

probability distribution of This is typically a vector of parameters, and again the . (ߠ|ݔ)݌	~	ܺ	.i.e ,ݔ
probability distribution here is very general.

· ௫, the hyper-parameter set of the uncertain parameterߙ .s distribution, i.e’߆ ,Again .(௫ߙ|ߠ)݌	~	߆
this is likely to be a vector of hyper-parameters.

Bayesian inference with indirect updating works as follows:
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· We have prior distributions for the parameter sets ߮ and :ߠ ,௬൯ߙ|൫߮݌	~	ߔ ,(௫ߙ|ߠ)݌	~	߆
representing our view of the world in the absence of specific data.

· The sampling distribution for the observations i.e. the distribution of the observed data ,ࢷ
conditional on the parameter set	ߠ, i.e.	݌൫વ|ߠ൯. This is the probability of the sample વ occurring,
given that their distribution is characterised by .ߠ  It  is convenient to view this as a function of θ
rather than વ, in which case it is termed the likelihood L൫ߠห܆൯ = .(ߠ|܆)݌

· The marginal likelihood of વ is the distribution of the observed data marginalized over the
parameter set, i.e. (௫ߙ|ࢷ)݌ = (	ࢷ|ߠ)ܮ∫ ∙ .ߠd(௫ߙ|ߠ)݌

· The posterior distribution of is the distribution of the parameter(s) characterising ߠ after ݔ
considering the observed data. This is determined by Bayes' rule as:

,θ|વ)݌ (௫ߙ = (	ࢷ|ߠ)ܮ) ∙ ((௫ߙ|ࢷ)݌)/((௫ߙ|ߠ)݌

· In order to understand what tells us about the distribution of ࢷ and ultimately predictive ߔ
distributions for – തݕ  a  set  of  future  or  unknown  observations  of ܻ, we need to understand the
statistical relationship between ܺ and ܻ. We may represent this relationship through the
conditioning effect of on ߔ .i.e ,߆ ,ߠ	|	൫߮݌	~	ߔ .௬൯ߙ

· Given this relationship, the updating effect of વ on :may be expressed as ߔ

,ࢷ	|	φ)݌ ௫ߙ , (௬ߙ = න݌൫߮	|	ߠ, ௬൯ߙ ∙ ,વ	|	θ)݌ (௫ߙ dߠ,

,વ	|	߮)݌ ௫ߙ , (௬ߙ = න݌൫߮|ߠ, ௬൯ߙ ∙ (ࢷ|ߠ)ܮ ∙ (௫ߙ|ߠ)݌ dߠ නܮ൫ߠ|વ൯ ∙ ൘ߠd(௫ߙ|ߠ)݌

· The predictive posterior distribution for ത (is the best forecast that can be made afterݕ becomes ܆
available) is given by:

,વ	ത|ݕ൫݌ ௫ߙ , ௬൯ߙ = න݌(ݕത	|߮) ∙ ,વ	|	߮)݌ ௫ߙ , (௬ߙ d߮

,ത|વݕ)݌ ௫ߙ , (௬ߙ = ඵ݌(ݕത	|߮) ∙ ,ߠ|൫߮݌ ௬൯ߙ ∙ (ࢷ|	ߠ)ܮ ∙ (௫ߙ|ߠ)݌ dߠd߮ නܮ൫ߠ|વ൯ ∙ ൘ߠd(௫ߙ|ߠ)݌

A.2  Statistical model of aggregated demand
A.2.2.1 Demand as a discrete-time random process
We adopt a discrete-time framework of 30-minute intervals, which means that we treat the power demand
during these periods as a single value. We initially index the 30-minute intervals by and model the ,ݐ
demand at time as the continuous random variable ݐ ௧ܦ . The sequence of demands over consecutive
intervals form the random process {… ,௧ିଵܦ, ௧ܦ , ,௧ାଵܦ … } and, initially, we do not assume stationarity on
this process. That is, we initially allow the probability distribution for each time step to be distinct, and
characterised by a probability density function (PDF) written as ௧݂(݀).  This very general case will  later be
simplified by the introduction of identical PDFs for all time steps with the same combination of time-of-day
and season.

Unless otherwise stated, an uppercase letter indicates a random variable, while lowercase letters indicate
either realised values of those variables, or other deterministic quantities such as probability distribution
parameters.  Times  of  day  are  expressed  as  e.g.  00:00  or  00:30,  and  these  examples  refer  to  the  periods
00:00 – 00:29 and 00:30 – 00:59, respectively.

A.2.2 Parametric distribution selection
It has been established through exploration of the TC1a dataset of domestic demand collected within the
CLNR project that Gamma and 3-parameter-Weibull distributions are suitable parametric families for
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capturing distributions of demand. This was found to be true where the number of customers contributing
to the aggregate demand ranges from 1 to 100s, which is the essential range for LV networks. Each ௧ܦ  in
our model is assigned either a Gamma or a 3-parameter-Weibull distribution (henceforth referred to as
Weibull, for convenience), with the choice between them depending on the time-of-day and season of as ,ݐ
is explained in the next section.

The form of the Gamma distribution’s PDF for the demand at time :is	ݐ

௧݂(݀; ݇௧ , (௧ߠ =
݀௞೟ିଵ	 ∙ ݁

ିௗ
ఏ೟ൗ

	௞೟ߠ ∙ Γ(݇௧)
where ݀ is a level of demand, ݇௧  is the shape parameter for time ,ݐ ௧ߠ  is the scale parameter for time and ݐ
Γ() is the Gamma function – an extension of the factorial function.

The form of the Weibull distribution’s PDF for the demand at time :is ݐ

௧݂(݀; ݇௧, ௧ߠ , (௧ߞ =
݇௧
௧ߠ
∙ ൬
݀ − ௧ߞ
௧ߠ

൰
௞೟ିଵ

∙ ݁ି൬
ௗି఍೟
ఏ೟

൰
ೖ೟

where ݀, ݇௧  and ௧ߠ  have  the  same  meaning  as  above,  and  where ௧ߞ  is an additional location or ‘shift’
parameter for the Weibull distribution at time We use lower case symbols for parameters here as we are .ݐ
not explicitly considering the Bayesian formulation of this model.

A.2.3 Seasonalities and a time-collapsed model
Although customer demand is random, it is also clearly periodic – both across the hours of the day, and
across seasons. For this reason, our model assumes a distinct probability distribution for each unique
combination of time-of-day and season, and assumes that each time step with these combinations are ݐ
identically distributed. This is a simplification of the general case stated above that each time step within ݐ
the random process could potentially have its own distinct distribution, characterised by the PDF ௧݂(݀). For
clarity we adopt a new notation where ݅ indexes the time-of-day, starting with 00:00, and indexes the ݏ
season, starting with winter. So, the full set of distinct probability distributions is characterised by the PDFs
௜݂,௦(݀), where ݅ = 1, 2, … , 48 and ݏ = 1, … , 4, and e.g. ଵ݂,ଵ(݀) is the PDF for demands for 00:00 in winter.

We define the 4 seasons of the year as winter – Dec to Feb, spring – Mar to May and so on, so that there is
a total of 192 unique distributions. There are, therefore, 90 repetitions per year for each of the 48 winter
distributions (ignoring leap years), rising to 92 repetitions per year for each spring and summer distribution,
and 91 time-steps for autumn distributions. For convenience, we use the letter to represent the number ݎ
of distinct distributions, i.e. ݎ = 192. We also adopt ௜,௦ to represent the number of time-steps with theݍ
PDF ௜݂,௦(݀), and as stated above these range from 90 – 92, depending on .ݏ

We adopt a ‘time-collapsed’ model, where we are not concerned with the statistical relationship between
consecutive time-steps (except for the process of simplifying parameter estimation, as will be covered in
another section below). This does not compromise our modelling in any way, as long as we limit ourselves
to the expected values  of  any derived random variables.  We also use τ to  index the repetitions  for  each
unique distribution, so that our original concept of demands forming the non-stationary random process
{… ௧ିଵܦ, , ௧ܦ , ௧ାଵܦ , …} having PDFs {… , ௧݂ିଵ(݀), ௧݂(݀), ௧݂ାଵ(݀), …} has changed to thinking about a set of ݎ
stationary random processes {… ,௜,௦,ఛିଵܦ, ௜,௦,ఛܦ , ௜,௦,ఛାଵܦ , … } with PDFs ௜݂,௦(݀). Further, one year of observed
demand values are seen, in this framework, as a set of samples from each ௜݂,௦(݀), with ௜,௦ trials in eachݍ
sample.

Given this reformulation, the parameters of our Gamma and Weibull distributions become ݇௜,௦ , ௜,௦ forߠ
both, and .௜,௦ for Weibullߞ
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A.2.4 Exceedance Expectations
We are generally interested in the probability that the random demand, ௧ܦ , as some time-step exceeds ݐ
some level, ݀. In order to calculate this, we must know the relevant probability distribution, and therefore
must express as ݐ  the  set  of  indices ݅, ,ݏ ߬.  The probability of the demand ௜,௦,ఛܦ  –  i.e.  the  demand  on
instance τ of the time-of-day and season combination ݅, exceeding the value – ݏ ݀ can  be  written  as
ఛܦ)௜,௦۾ ≥ ݀), and is given by ఛܦ)௜,௦۾ ≥ ݀) = 1 − F௜,௦(݀), where F௜,௦(݀) is the cumulative distribution
function (CDF) associated with ௜݂,௦(݀). These are easily evaluated for the chosen Gamma and Weibull
distributions described above.

We are interested in the exceedance expectation for this level of demand, i.e. the expected number of
time-steps in a year where this level of demand will be exceeded. It must be noted that the number of
occurrences within individual years may deviate considerably from this average. Taking advantage of the
linearity of the expectation operator, the result is simply given by:

݀	݂݋	݊݋݅ݐܽݐܿ݁݌ݔܧ	݁ܿ݊ܽ݀݁݁ܿݔܧ	݈ܽݑ݊݊ܣ = ෍ ෍ ௜,௦ݍ ∙
ସ଼

௜ୀଵ

ସ

௦ୀଵ
൫1 −	F௜,௦(݀)൯.

For the peak demands of interest to network design, only a small subset of the ݅, combinations will make ݏ
a significant contribution to this summation.

For LV circuits with significant presence of distributed generation, the net demand can take negative
values. Similar principles can be applied to calculate the number of times these negative extremes will be
exceeded on average, by simply replacing (1 − F௜,௦(݀))  with F௜,௦(݀).

A.2.5 Bayesian Formulation of the Demand Model
In this section, we extend our demand model of demand to a Bayesian version. The main difference is that
the distribution parameters become random variables, i.e. ௜,௦ taking realised valuesܭ ݇௜,௦,	߆௜,௦ taking
realised values	ߠ௜,௦, and ܼ௜,௦ taking realised values .௜,௦ߞ

The model is obviously considerably more complicated, as each of these random parameters have their
own distributions, characterised by sets of hyper-parameters, which we write as ௜,௦௄ߙ , ௵௜,௦ߙ  ,  and ௜,௦௓ߙ

respectively. Model building now involves choosing suitable parametric families for these distributions, as
well as hyper-parameter values for the prior distributions. One obvious and sensible approach is to sample
aggregate series from the TC1a dataset and fit optimal parameters to each one, using a standard method
from frequentist (i.e. non-Bayesian) statistics. The standard method is to find maximum likelihood
estimates (MLEs), i.e. the parameter set that maximises the likelihood function of the data. The prior
parameter distributions can then be fitted, again as MLEs, to the distribution of parameter values obtained
from the sampled series.

A further complication might be a need to consider the statistical relationship between the various random
parameters. A common way of representing such relationships is with Gaussian copulas – i.e. the
assumption that if the individual (marginal) distributions are transformed to be Normal (also known as
Gaussian), then the together they will form a joint-Normal distribution. This has the very convenient quality
that their statistical relationship is entirely captured by linear correlations. In this case, the set of hyper-
parameters would be extended from vectors to covariance matrices, capturing the correlations between
each pair of parameters, along with their individual variances.

When considering any instance of a group of customers, the prior distributions can be updated as outlined
in Section A.1 whenever data specific to those customers becomes available – almost certainly indirect
observations in our case.
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A.2.6 A Method for Reducing the Number of Parameters
One major challenge with the method presented thus far is the very large number of parameters involved:
there are 192 distributions, each with either 2 or 3 parameters, and each of those parameters has at least a
set of 2 or 3 hyper-parameters, if not rather large covariance matrices. Another problem is that when fitting
the model to a finite dataset, the number of observations associated with any ݅, pair may be relatively ݏ
small. For the TC1a dataset, spanning 2 winters and 3 summers, the number of observations associated
with the ݅, pairs vary between 180 and 270. It is therefore wise to impose some additional conditions on ݏ
the distributions in order to reduce the parameter numbers, and temporarily reduce the number of distinct
distributions. This is achieved by first dividing the sequence of 48 times-of-day, for each season, into 3 or 4
subsets of consecutive ݅ – labelled S௝,௦. The principles behind the optimal segmentation choices are that:

1. they should cluster similar mean values as much as possible.

2. one of the following relationships should be approximately true within the sequence:

i. the variability in the mean and the standard deviation of demands across the sequence are
roughly proportional.

ii. there is significant variability in mean across the sequence, but the variability in standard
deviation is negligible.

iii. there is significant variability in both mean and standard deviation across the sequence, but
there is no simple relationship between their patterns.

For simplicity, when condition (iii) holds, we act as though condition (ii) is in fact true, so the 1st simplifying
assumption we make is that either condition (i) or (ii) is true within sequences. This means sacrificing the
quality of standard deviation modelling, but is seen as a necessary compromise to overcome the stated
problems.

The next step of the parameter reduction process makes use of the useful characteristics of the mean and
standard deviation of Gamma and 3-parameter-Weibull distributions, i.e. what happens when you
transform Gamma-distributed variables with a constant multiplicative factor, and transform Weibull-
distributed variables by adding a constant.

The mean of a Gamma distribution with parameters ݇௧ , ௧ߠ  is given by ௧ߤ = ݇௧ ∙ ௧ and standard deviationߠ
by ௧ߪ = ඥ݇௧ ∙ ௧, which means that the multiplication or division of all demand values in a historic series byߠ
some constant factor will change ௧ߠ  by that same amount, without affecting ݇௧ . Consequently, the 2nd

simplifying assumption we make is that within a sequence where condition (i) is true, each distribution is
Gamma, and they share a common shape parameter, i.e. ௜,௦ܭ = ௝,௦ for allܭ ݅	߳	S௝,௦. As a result, we can find
a set of values ௜,௦ for߉ ݅	߳	S௝,௦  such that multiplication of the random demands by the relevant value makes
all mean and standard deviation values within the sequence equal. The upper case is used, due to being ߉
in a Bayesian framework. This means that all transformed demand values within the sequence are
identically distributed, with parameters ௝,௦ܭ , ௝,௦, and we can fit these parameters to a dataset that’s߆
typically  10  –  20  times  bigger  than  the  original,  separate  ones.  The  original  demand  series  can  be  easily
restored, as they have the parameters ௝,௦ܭ , ௝,௦߆ ⁄௜,௦߉ .

In the case of Weibull distributions with parameters ݇௧ , ௧ߠ , ௧ the mean and standard deviation in this caseߞ
are given by:

௧ߤ = ௧ߞ + ௧ߠ ∙ Γ ቀ
ଵ
௞೟

+ 1ቁ, ௧ߪ = ௧ߠ ∙ ටΓ ቀ
ଶ
௞೟

+ 1ቁ − Γ ቀ ଵ
௞೟

+ 1ቁ
ଶ

.

This means that adding or subtracting some fixed constant to all the data in a historical series will change
௧ߞ ,  and  therefore  the  mean,  by  that  amount  –  while  having  no  effect  on ݇௧  and ௧ߠ , and therefore the
standard deviation. Therefore, the 3rd simplifying assumption we make, following a similar process to that
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above, is that for sequences where condition (ii) is true, each distribution is 3-parameter-Weibull and share
both shape and scale parameters i.e. ௜,௦ܭ = ௝,௦ andܭ ௜,௦߆ = ௝,௦ for all߆ ݅	߳	S௝,௦. As a result, we can find a set
of values ௜,௦ forߓ ݅	߳	S௝,௦ such that addition of the relevant values to the random demands make both the
mean and standard deviation values within the sequence equal. This means that all transformed demand
values within the sequence are identically distributed, with parameters ௝,௦ܭ , ௝,௦߆ , ௝ܼ,௦. The original demand
series can again be easily restored, as they have the parameters ௝,௦ܭ , ௝,௦߆ , ௝ܼ,௦ − .௜,௦ߓ

Naturally, all random parameters have an associated set of hyper-parameters, and in the case of ௜,௦ and߉
௜,௦, covariance matrices will almost certainly be required for accurate modelling. These will all requireߓ
parametric families to be chosen, as well as prior values for the hyper-parameters. This can again be
achieved through sampling aggregate series from the TC1a dataset and MLE parameter fitting.

Capgemini has tested this model, including these simplifications on CLNR data in their SMA3 report35.

They found that winter demand could be decomposed into three sequences:

· Between 07:30 and 15:00, a 3-parameter Weibull distribution is used

· Between 15:30 and 22:00, a Gamma distribution is used

· Between 22:30 and 07:00, a Gamma distribution is used.

For winter, i.e. ݏ = 1, this model would therefore have 55 parameters:

· 2 values each of the Gamma shape and scale factors (corresponding to 2 ݆-values)
· 1 value each of the Weibull shape, scale and shift parameters (corresponding to 1 ݆-value)
· 32 values for the multiplicative factors, combining the number of ݅-values in the two Gamma

sequences
· 16 values for the additive factors, representing the number of ݅-values in the Weibull sequence

If the parameters are all assumed to be normally distributed, as Capgemini’s analysis suggests, then the
model has 110 hyper-parameters – a mean, and a standard deviation for the normal distributions of each
of these 55 parameters. This is comparable to the number of parameters currently used within the ACE49
model, which takes 48 values of and 48 values of ݌ However, more hyper-parameters may be necessary .ݍ
if is found that the multiplicative and additive factors display significant correlations, as discussed above.

A.3 Customer numbers, customer types, LCT demand and generation
One major omission to the model presented so far is that it does not make explicit the dependency on the
number of customers, ݊. Of course, such a dependency must exist even for the simplest possible model,
and is best expressed by making the hyper-parameters vary with ݊, e.g. ,௜,௦ߙ

௄ (݊). We consider first the case
where ݊ is known (i.e. deterministic).

The next level of complexity is, if customers are divided into types, e.g. types ,ܣ and ܤ The types could .ܥ
be the MOSAIC categories used in the CLNR project as explored in this project, or any other system based
on the type of property, or the socio-economic features of the property’s area. In this case, the hyper-
parameters would change with the number of customers of each type - ݊஺, ݊஻ , ݊஼ , to that the hyper-
parameters would be expressed as e.g. ௜,௦௄ߙ (݊஺, ݊஻ , ݊஼).

The further level of complexity is to introduce different numbers of LCT demands and generation
capacities. In this case, the hyper-parameters would change with the numbers of customers of each type
and the numbers of LCTs present, e.g. ௜,௦௄ߙ (݊஺, ݊஻, ݊஼ , ݊ா௏ , ݊ு௉, ݊௉௏), where ݊ா௏  is the number of electric
vehicles present, ݊ு௉  is the number of heat pumps and ݊௉௏  is the number of photovoltaic installations.

35 Workstream 4 Output – Smart Meter Data Analytics Final Report
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We assume here that the Gaussian and 3-parameter Weibull distributions are, between them, sufficiently
flexible to accommodate at least a modest amount of LCTs simply with a change of parameters – the only
caveat being that when PV is present in significant amounts, the distribution must have a shift-parameter
that allows for the minimum supported values to be negative. Perhaps a point might eventually be reached
in the future where the nature of demand has changed so significantly that Gamma and Weibull
distributions cannot adapt to provide a good fit, but this is not a current concern.

For any combination of domestic demands of various types along with LCTs, the model can be constructed
‘from scratch’, by establishing prior values for hyper-parameters by sampling from TC1a along with other
datasets – and pertinent details of those other datasets are discussed in the following sections. However, it
should be possible to avoid this full process by ‘learning’ the relationship between the set of inputs
݊஺, ݊஻ , ݊஼ , ݊ா௏ , ݊ு௉ , ݊௉௏  and the set of prior hyper-parameters, through neural network methods. Indeed,
the relevance of neural network methods to this problem has recently increased, with surge of interest and
available  tools  that  combine  Bayesian  statistics  with  neural  networks  to  form  the  new  field  of  deep
Bayesian networks.
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Appendix B – Scripts
Python scripts for network modelling:

1. ‘Spatial_Importer.py’ –  this  is  the main script  which calls  all  the other  modules.  The script  has  a
Boolean flag ‘bRunLF’, if set to TRUE the script calls the module ‘ProfileBasedLF.py’ to run the load
flows. The user also has the option of specifying if  the load flow runs will  be on a balanced or an
unbalanced network.

2. ‘ProfileBasedLF.py’ –  this  script  reads  in  the  demand  values  for  all  the  customers  in  a  network
from a csv file ‘load_matrix.csv’. It then loops through each demand scenario or sample from CLNR
data, runs a load flow and stores the line flow results (kW), the nodal voltages (pu) and the
demand values (kW) in a variable (dictionary). At the end of all the load flow runs, the results
variable is exported to three different csv files ‘BusVolt_Scale_1.csv’, ‘LinekW_Scale_1.csv’ and
‘LoadkW_Scale_1.csv’

3. ‘network_parameterisation.py’ – this script runs the simple regression analysis on the power flow
modelling, aggregating network demands and then regressing voltage and utilisation against these.

Python and R scripts for demand modelling

A total of 89 R-scripts were written in the process of processing the CLNR datasets, conducting data analysis
and demonstrating the model. With the majority of these reliant on multiple data files, it is not practical to
present all of them, rather a selection of the most essential. Further, most of the data files are large, with
several being multiple gigabytes in size. For this reason, the data files are available on request, rather than
automatically shared.

1. ‘tc1a_rearrange.R’ –  transforms  the  raw  TC1a  dataset  of  domestic  customers  from  the  CLNR
project into a more compact and logical form, adhering to the ‘tidy data’ principle that data that’s
ready to  be analysed using a  tool  such as  R  should comprised of  a  table  where each column is  a
unique variable and each row is a unique observation. Requires the (very large) data file
‘TrialMonitoringData_6.csv’.

2. ‘tc1b_rearrange.R’ – does the same as the file above, but for the TC1b dataset of SME customers,
and requiring the data file ‘TrialMonitoringData.csv’. Similar scripts were developed for each ‘test
cell’ dataset from the CLNR project.

3. ‘main.py’, ‘scenario_creator.py’, ‘definitions.py’, ‘data_assembler.py’ – together, these four
scripts are used to sample data from the CLNR TC1a and TC1b datasets, allowing different
combinations of customers (scenarios) to be flexibly defined.

4. ‘mle_fit.py’ – this script finds the best fitting Gamma and Weibull distributions, in line with model
described in this report, for CLNR data sampled from the previous four scripts. These are fit on the
basis of “maximum likelihood estimation”, hence the name “mle_fit”.

5. ‘exceedance_expectations.py’ – this script evaluates and aggregates the multiple seasonal and
time-of-day probability distributions in order to determine the exceedance expectations for
demand.

6. ‘graphs_cranwood.py’ – this script was used to calculate the exceedance expectations for thermal
utilisation and voltage, based on the network parameterisation and demand modelling. A similar
script was also prepared for the Sinderby case study.
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Appendix C – CLNR Data Quality
The following analysis was initially conducted on the TC1a data, to examine its quality, and to establish
some of the most salient aspects of domestic demand distributions:

Analysis  of  how much data is  present  in  the series,  i.e.  not  ‘NA’  values,  as  a  function of  time,  and as  a
distribution across customers.

The analysis of availability across time is presented in figures A.C.1 and A.C.2, which are time-series plots of
the proportion of customers reporting non-NA data for each 30-minute interval in the trial period. The
series are presented separately for customers using two different smart meter brands: Logica (figure A.C.1)
– which includes roughly 2/3 the customers, and Trilliant (A.C.2). Figure A.C.1 shows that the availability of
data is generally quite high for customers with Logica devices, albeit with near constant customer attrition
after an initial stable period, and which several very brief periods where either all or most of the data is NA,
for unknown reasons. Figure A.C.2 shows that the proportion of non-NA values reported by customers with
Trilliant devices was generally lower, with a reverse trend of general improvement over time, and a brief
period of good quality toward the end of the period.

Figure A.C.1 A time-series plot of the proportion of TC1a customers with Logica Meters returning non-
NA values
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Figure A.C.2 A time-series plot of the proportion of TC1a customers with Trilliant meters returning
non-NA values

Figure A.C.3 A histogram of the proportion non-NA values returned by TC1a customers in the ‘Alpha
Territory’ category across the trial period
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Figure A.C.3 moves on to examine the variability in the proportion of values returned by customers that
were not NA, taken over the entire trial period. Customers with both types of smart meter were included,
but for this particular plot, only customers in the ‘Alpha Territory’ category. The same plot was produced
for all 15 MOSAIC types, with the results very similar and thus omitted. It can be seen that the proportions
vary dramatically across the customers, ranging from poor values between 20-30%, to others between 90 –
100%. However, the latter interval is much more common than any of the others. Indeed, it was found that
a  total  of  4000  customers  have  an  availability  (i.e.  non-NA  reported)  value  above  97%,  with  the  number
dropping fairly rapidly above that threshold. It was deemed that 4000 is a sufficient number of customers,
and as such all customers with availability factors below this were excluded from the analysis.

Analysis of features in the data that can be identified as erroneous.

This part of the analysis investigated whether there were any patterns or features within some customers’
series that are clearly erroneous, and could be systematically removed. Candidate features were long
periods of zero consumption, periods of suspiciously constant demand, extremely high values and periods
of flat negative demand. While evidence of all of these were discovered, close examination of the series did
not yield any examples that were unquestionably erroneous. An example of a clearly valid time series
segment  for  a  single  customer  is  presented  in  figure  A.C.4  below.  A  relatively  short  period  of  NA  was
present (represented in the figure as a flat negative demand), but the remainder looks exactly as expected.
Figure A.C.5 displays more suspicious-looking behaviour, given the combination of very small amplitude
noise around 8kWh (16kW) for many days, followed by ‘normal’ patterns on a much-reduced scale, then
finally a stretch that’s perfectly flat at a small negative value. While the overall impression is that the data
may be erroneous, there is no firm evidence of that, and so the data should be included in the analysis.

Figure A.C.4: An example time-series plot of a single customer’s demand, expressed as consumption
during 30-minute intervals. NA values have been replaced by -1 KWh.
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Figure A.C.5: An example time-series plot of a (different) single customer’s demand, expressed as
energy consumption in 30-minute intervals. The negative values are genuine.

Analysis of consumption PDF’s as group averages and for individual customers

This analysis involved plotting PDFs of 30-minute energy consumption from the data to (i) establish their
basic characteristics, (ii) determine how different group-average PDFs are between MOSAIC groups, and (iii)
determine how different the PDFs of individual domestic customers are from each other, and from their
group average. It should be noted that the PDFs calculated are entirely empirical, derived through a data
smoothing technique called kernel smoothing. This is in contrast to the parametric distribution fitting that
lies as the heart of our demand model. In all  cases, the distribution is over all  time-steps in the TC1a trial
period.  Figure  A.C.6  shows  the  average  result  for  all  customers  in  the  ‘Alpha  Territory  category,  while
figures A.C.7 and A.C.8 show (different) individual customers.

The figures show a consistent pattern of a highly skewed distributions, with the probability rising very
quickly  to  a  strong  peak  at  a  relatively  low  demand  value  (typically  of  the  order  of  a  few  100s  of  Wh),
before falling exponentially, with the presence of vary rare but much larger than average tail values.
Unsurprisingly, the group mean PDF is very smooth and the shape was found to be almost identical for all
MOSAIC types, with differences of around 10-20% in the scale of the horizontal axis.

Individual customers display similar features, but almost always with a series of smaller peaks at medium
demand level – a feature that can be seen clearly in figure A.C.7. The customer represented in figure A.C.8
is slightly extreme in the relatively large demand value at which the probability peaks, but it was certainly
found that the horizontal axis scale varied considerably between customers.
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Figure A.C.6 The empirical PDF of 30-minute energy consumption for TC1a customers in the ‘Alpha
Territory’ category, where the distribution is over all customers, and all time-steps in the trial period

Figure A.C.7 The empirical PDF of 30-minute energy consumption for a single TC1a customer, where
the distribution is over all customers, and all time-steps in the trial period
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Figure A.C.8 The empirical PDF of 30-minute energy consumption for a (different) single TC1a
customer, where the distribution is over all customers, and all time-steps in the trial period


