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1.1 Project Context

Enhanced Understanding of Network Losses is a @rojhich seeks to enable DNOs to

better understand, and my decisions pertainintheunavoidable losses which take place in

their networks. The project is broken down intefivork packages:

WP1: A literature survey which outlined the state of #re in loss estimation, the
methods and tools for managing and reducing lossekthe key issues which need
to be addressed by future research, includingpttuect.

WP2: A data acquisition and analysis exercise, primadgbmprising sensitivity
analyses, which seeks to identify the key driverdosses, and the network and
measurement parameters which dictate how accurdatsgs can be estimated.

WP3: A modelling exercise which will enable a limitedmiier of representative
models and methods to provide learning which canefie the majority of
distribution networks in Great Britain

WP4: Using the methods from WP3 and the data and legrfiom WP2, to
investigate future scenarios in which changing deinand new technologies are
introduced into the network, and the impact this ba network losses. This will be
carried out in a four level approach: Level 1 wilNestigate demand growth; Level 2
will look at the uptake of low carbon technologiesich will fundamentally alter the
demand patterns present in the system now; Lewall3ook at smart grid actions
taken without considering the impact of losses; amdel 4 will investigate how
smart grid actions can be altered, by includingéssin the decision making process.

WP5: To propose policy and regulatory measures to hedorporate losses into
decision making, and particularly how losses shdwddviewed in a system with
electricity whose cost and carbon intensity vawéh time and location.

An overview of the project, the specific work whighll take place at each stage of the

project, and how these are interlinked, is showRigure 1. This report describe the activities

completed in WP2 and the learning which will beetakorward into the later stages of the

project.
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Enhanced understanding Improved Calculation

Main activities and outputs
- Run simulations using 1st iteration
of the model to capture:

- Knowledge of - the value of data (includes

e amount, sampling rate,
practices quality, and accuracy of data)
- Methods to

- Effects of network topology
(urban and rural)

- Measurement location (level
of data aggregation)

reduce losses
- Existinglosses
estimation
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+ University

Losses in a DSO environment

Key project outputs
Novel loss estimation method taking into
account network topology, data available, data
quality and type (WP4)
Losses in a DSO environment:
Quantify losses using novel loss
estimation method and include them in
cost functions used in operational
management decisions (WP5)
Consider operating examples from CLDS
and explore the impacts of unintentional

—>

WP3

methods

Enhanced
modelling

- Produce report summarizing
findings and inform modelling

DSO actions affecting losses (e.g. energy
and power transactions in market
operations, Lv3), and actions for loss
reduction (Lvl4) (WP5)

Lv2 uptake of
smart grid
technologies

WP1

Literature
Review

WP2

Lvl1 Impacts of

. demand growth and e

ata representing maturii Future Regulaton
. value of data i " L

Analysis levels in the Scenarios framework

understanding of losses
Identify gaps Modelling and analysis Validation

Figure 1: An overview of the project work packaged ahjectives

Network

Note: Lvi1-4 are

WP4 WP5

In a previous report, WP1 reviewed the state ofaifhén loss estimation and loss reduction in
both academic literature and industrial practicescussing methods for resolving the
variability of demand; estimating the impact of loarbon technologies, including harmonic
currents; the impact of load imbalance; methods dstimating the impedance of Low
Voltage networks; and assessing the impact of nmeasnt error and data granularity on the
accuracy of loss estimation. The key findings hbgen summarised in four categories i.e.
the impact of present and future network scenanmicisding the variability of demand and
generation, the impact of Smart and non-Smart Taogy, the impact of measurement
errors, and the impact of measuring at multipleregation levels. In a subsequent report and
paper, we revealed the effects of demand growtlogses and their estimation in traditional

networks.

In this report, we investigate the value of dataimulerstanding and quantifying losses; thus
focusing on three of the four categories identif@xve. In WP3 we will use these findings
and study the impacts of increased uptake of sgralt technologies in future networks,
through a modelling framework that will enable imyped estimation of losses taking into
account network topology, data available, dataituahd type. In the latest stages of the
project we will use this to study losses DSO envient considering intentional operating
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decisions taken by the Operator as well as uniimeait ones originating e.g. from market

operations.

For the analysis of this WP we proceeded in twgestafirst gathering and analysing network
data from multiple sources, including SCADA, prajeata, representative profiles, and
forecasted data, and secondly performing sengitamitalyses using a first iteration of our

modelling framework, in order to capture:

- the value of data, including the amount, samplatg,rquality, and accuracy
- the effects of network topology considering bothair and rural configurations

- the effects of measurement location and the lelvdata aggregation

2 Methodology

This report contains a number of sensitivity anegysinvestigating the impact of various
factors on the accuracy with which network lossas be estimated. In each case, a set of
observed network loading data — which will be teelaas the ground truth for the purposes of
the sensitivity analysis — was available. Some ghanvere made to that set of data, to
represent a way in which the data could be obsdrvadyiven set of conditions, for example
by reducing the sampling rate or adding an errd¢o ¢ime data. A load flow using a model of
the local network was then performed using MATPOWRRSsess the losses in the network
using both the ground truth dataset, and the nextidiata set; the difference between the total
losses in each case was then considered to bestineation error introduced by a particular

phenomenon. This process is illustrated in Figure 2



Electrical Losses Newcastle

Data Analysis + University
Ground-Truth /
Demand Data, D /
v
[ Data Modification ]
v
Modified DEnland
Data, D
v Y

Observ ed Network Actual Network
Losses. L Losses. L

EL=ZL—Z ]

Figure 2: A flow chart showing the methodology ugeddarry out the sensitivity analyses.

[ Load Flow Engine ]

The method is based on the assumption that thendrivuth data set is free from errors, and
can be used to calculate the network losses wittegteaccuracy. While this will not be the
case — the data used will have errors of all tipedylisted in this report — the results arising
are still valid when each phenomenon is takenatat®n provided the ground truth data are
broadly representativef the real behaviour of the system. The purpost®fmethod is to
determine how a controlled change to some datataftee ability of an engineer to use those
data to calculate network losses. Any errors in daga used as the ground truth can be
disregarded, since this is being used as a basklmadding the controlled errors, not to
estimate the losses in the system those data lyctepfesent.

3 Network and Consumer Datasets

The developed loss estimation method has the palteot use data inputs from multiple

aggregation levels of the distribution network.
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Whilst accuracy with regards to overall system Idsgermination is likely to increase as a
function of increasing system data visibility, tltiguld lead to significant increases in data

requirements with minimal overall gain.

In order to inform future data requirements, a coration of consumer, and historic network
monitoring data will be used to test the loss eatiom model’s sensitivity to receiving data
from each of the potential network aggregation Iev&hese aggregation levels are most

likely in line with typical voltage level segregatis as follows:

3.1 LV Datasets
3.1.1 Consumer Data

Datasets available for testing include smart megedata from the Customer-Led Netwrok
Revolution (CLNR) at a half hourly resolution, aAdtivating Customer Engagement (ACE)
projects at a 20 second resolution, with the paiktd resample at any given rate above this
in addition to other datasets if necessary frorevaht projects such as lIrish Trials / EDRP

datasets.

Data from the CLNR project covers a period of ab@nyears, and includes consumer data
for around 9000 normal tariff domestic customemyah and Medium Enterprise (SME)

consumers and Industrial and Commercial (1&C) comsudata from a number of sectors.

In addition to 1&C customer demand data, therals data from distributed generation
customers connected to the distribution networkat hourly resolution, including wind

farms, a limited number of hydro and landfill gangrators.

In addition to the standard tariff consumers, datgrding domestic consumers with various
forms of embedded generation including air souesg pumps and solar photovoltaics is also
available to potentially model such LCT adoptingtomers.

Generic consumer data is also available in the fofistorical profiling data from Elexon.
These are in the form of representative demandlgsofor each of the consumer demand
classes 1-8. These profiles are for each of theeyfearly subdivision periods (Winter, Spring,

Autumn, Summer and High Summer) at a half hoursoh&ion. These 8 demand classes
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cover a range of consumer types, from domesticSiv#s to a range of maximum demand

I&C consumers.

There is the additional possibility to synthesispresentative demand profiles with a high
degree of disaggregation information through the afsa demand simulation method such as
the Loughborough University’'s Centre for Renewalldeergy Systems Technology’s
(CREST) model.

3.1.2 Network Data

Newcastle has access to a range of network data #aumber of sources. Data from
around 30 Northern Powergrid substations are adaildom iHost monitoring equipment.
Historical data from a set of similar sites is ats@ilable from the CLNR project covering
around 10 LV secondary substation sites, includivigdistribution board data for outgoing
downstream LV feeders, transformer monitoring damabient temperatures and at some sites
additional data from link boxes and LV connectedT@k. The data within these datasets is
at 1 minute resolution. Historic information regagl customer composition within these

networks is also available.

Similar datasets are also available for the WeltingScience secondary substation on the

Newcastle Helix network, in addition to appropriaggwork models.

Northern Powergrid’s Element Energy model givepatitata for a range of future demand
scenarios. This provides secondary substation deéncaaracteristics for any secondary
substation within Northern Powergrid’s region feewvithin the losses modelling approach.

3.2 HV Datasets

The majority of the available HV network data confesm the legacy CLNR network
monitoring installations. This consists of histocBEADA data for downstream HV feeders at
the Rise Carr and Denwick Primary Substations (dutei and Half Hourly resolution). This
also includes transformer monitoring data includtag position and various temperature

values including ambient.
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There is also additional network monitoring datanfrHV installed RTTR equipment on
overhead lines (OHLs) (Denwick only) and undergwables (UGCs) (Rise Carr only).
This monitoring equipment provided a range of ambmeteorological parameters which
can be used in conjunction with the electrical dedsafor temperature modelling and
correlation if necessary. These monitoring sites @irovided information on feeder currents

and various equipment thermal parameters.

3.3 EHV Datasets

Datasets from the EHV system at present are lintiteparameters measured at the RTTR
OHL monitoring points on the incoming 66kV circud the Denwick Primary substation.

This dataset provides the same information as fatrtkde HV monitoring locations.

4 Senditivity Analysis Studies

4.1 Time Resolution

This section examines the impact of time resolutonloss calculation at different voltage
levels. Data of different granularity are employadwo feeders: 1) Alnwick Estates Teed
feeder, part of the Denwick Primary Substation, ap&eeder 3 of the Maltby network. The
first one is a high voltage (HV) rural network atheé second one is a low voltage (LV) urban
network. The type of the network — specificallye tholtage level — is shown to play a

significant role on loss calculation, considerinffjedlent sampling rates for loading.

4.1.1 Alnwick Estates Teed Feeder (HV)

Figure 3 shows the loading of Alnwick Estates H\eddeeder for a year [1]; the sampling
rate is 5 minutes, and zero values have been raimfoem the time series. The number of

available data — after this process — is 93,312¢lwbtorresponds to 324 days.
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Figure 3: Alnwick Estates Teed feeder loading in22(8-min resolution, after having removed zero eaju

Figure 4 compares the loading of the feeder usingrh 30-min, and 1-h resolutions. It can
be seen that the latter two granularities satiefdgtapproximate the original profile. This is
because of the higher load diversity at this vatseyel, which leads to lower variability of
the loading compared to low voltage, for exampdeywdl be shown later.
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Figure 4: Comparison of feeder loading for a singlay (5-min, 30-min, and 1-h resolutions) for AlrkvEEstates Teed
feeder.

Figure 5 compares the variation of losses usingtlinee aforementioned sampling rates.
Power loss profiles accentuate the variation ofl |@s can be seen in these figures, and the
30-min and 1-h resolutions provide a good approtionaof the losses. The results of the
simulation for the whole year are shown in Tabl# $hould be noted that the loading profile

10
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of each load point of the feeder was consideredetequal to the feeder loading multiplied
by the peak demand of the load point divided by ghm of the peak demand of all load
points; this disaggregation method is also emplogesctions 4.2 and 4.3.
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o
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o
o
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o
o
N

o
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@

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

Figure 5: Power loss variation for a single day (3ap30-min, and 1-h resolutions) for Alnwick Estafieeed feeder.

Table 1: Results of one-year simulations using B;®80-min, and 1-h time steps for loading at AllvEsstates Teed feeder.

Time Resolution | Energy Losses (MWh]  Error (%)
5-min 276.86 -
30-min 276.69 0.06
1-h 276.47 0.14

Table 1 shows that the errors in loss estimatienvary small. Although there are significant
power loss errors at some individual time stepsstrobthem are small, and most importantly
the sign of the error alternates, so the mean &rdose to zero. However, this is enough to
produce a small error, which increases linearlyhwiite sampling rate. Figure 6 shows the
loss estimation error graphically, with a lineand line fitted. The loss is small in all cases,
and extrapolating the trend line to zero suggesas the error arising from the 5-minute
averaging (the highest sampling rate availabl®niy around 0.01%. These low errors are a
result of the low level of variability in the data result of the high level of diversity within
the larger load groups found on HV networks). Timsans the averaged lower resolution
data provide a good approximation to the 5-minatia.d

11
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Figure 6: The relationship between sampling rate &s$ estimation error for Alnwick Estates Teed éeed

4.1.2 Maltby Network Feeder 3 (LV)

Figure 7 shows the loading of feeder 3 of Maltby h&twork for a day in July 2012 using 1-
min, 5-min, 30-min, and 1-h data sampling rates [tjs clear that half-hourly and hourly
sampling rates do not provide as good approximatimnthe loading as in the previous
section. Even when the 30-min and 1-hour data amapared to the 5-min data, the
representation is still significantly worse thae game approximation at HV. This is because
loading is more volatile at LV, where fewer custoskead to lower diversity and therefore a
more variable profile. These differences in theetiseries are accentuated in power loss

profiles — which are illustrated in Figure 8— esplbg at peak hours in the evening.
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Figure 7: Comparison of feeder loading for a dayingsl-min, 5-min, 30-min, and 1-h resolutions atlfida Network

Feeder 3.
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Figure 8: Variation of power losses during a dayJualy, 2012, using 1-min and 1-h sampling rates afthy Network
Feeder 3.

Table 2 shows that the errors have more significahtes compared to those in the HV case,

due to the increase in loading variability.

Table 2: Results of one-day simulations using 1-80rmin, and 1-h time steps for loading at Malstwork Feeder 3.

Time Resolution | Energy Losses (kWh) Error (%)
1-min 2.54 —
5-min 2.51 1.06
30-min 2.47 2.63
1-h 2.46 3.18

Figure 9 shows the relationship between data sagpéte and loss estimation error for the
LV test case. The error using a 5-min resolutioa bhaen set to zero to allow comparison
with the HV case. Unlike the HV case, the trendaslinear, and the fitting suggests that the
additional error arising from the 1-minute samplisground 1.5%.

13
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Figure 9: The change in loss estimation error wiimpling rate for Maltby Network Feeder 3.

4.1.3 Conclusions

This section studied the effect of loading sampliatg on loss evaluation using 1-min, 5-
min, 30-min, and 1-h time steps. Two networks —Hh rural and an LV urban — were
considered in the analysis, and the results inglicdhat the most significant factor that
impacts loss estimation (in terms of time resohitis the variability of the feeder loading,
which is related to the load diversity; in geneealarger load group will have a higher level
of diversity, and therefore less variability, whioleans at HV load variability is generally
lower than at LV. The error in energy losses fdr laour resolution was approximately 0.1%
and 3% in HV and LV, respectively. Increasing thempling rate leads to greater
underestimation of energy losses because of thitirgssmoother profile. These results are
in agreement with the findings from a similar stushdertaken by the University of Sheffield
[2]; in that study, the authors focus on LV custosn@nd used aggregated smart meter data
to study demand groups of different sizes. The kstsmation error observed for the LV
feeders in this report (with a peak demand of 40k\$Avery comparable to the errors found

by the Sheffield study when aggregating 25 smatenwistomers.

4.2 Missing Values
4.2.1 Data unavailability modelling and simulations
This section analyzes the effect of missing valoasthe calculation of energy losses.

Measuring devices are imperfect, and it is commeonfind missing or bad data; this

14
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phenomena is modelled through a two-state contmudlarkov process [3], which is
illustrated in Figure 10. The frequency and duratd the sensor failures are represented by
the Mean Time to Failure (MTTF) and Mean Time top&e (MTTR) respectively. The
MTTF represents the average time for which theensd| operate without a failure, and the
MTTR represents the average duration for whichilit mot operate. In both cases, different
combinations MTTF and MTTR give various data unkmiities. Figure 11 shows an
illustrative example of an operating sequence afieasuring device, using an MTTF of 1
week and an MTTR of 1 day. Missing values aredillsing linear interpolation — a standard,
widely used method — between the nearest avaithdile and energy losses are compared to

the value corresponding to the complete dataset.

State 0 P> State 1

Device up < Device down
u

Figure 10: Measuring device state space diagrarandu represent the failure and repair rates, respedyiye

Sections 4.2 and 4.3 use simulations of Haxby Rwaudary distribution network (see Figure
12), which is an HV urban distribution network caimspg 7 primary feeders and 56 load
points. Figure 13 shows the power loss time sdaoesll 7 feeders of the network over a
year), using 17,520 half-hourly data, with zero gimg values from the dataset. The overall
energy losses that correspond to Figure 13 — wdmieltonsidered the base case — are 493.89
MWh.

15
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Figure 11: Simulated operating sequence for a meagudevice using an MTTF of 1 week and an MTTR afay;
illustrative example.. Each time step is 30 minutes
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Figure 13: Modelled power loss time series for Haxtgpwork over a year (2017), considering no misglatg; overall
energy losses = 493.89 MWh. Each time step is 80tes.

Figure 14 illustrates the simulation approach av@b day period. The original profile (with
no missing data) is shown in blue; the availabitiffhe measuring device is shown in black;
and when the measurement is unavailable, the Igadasn approximated via linear
interpolation based on the two nearest availablaega which is shown using the red line.
The process described is carried out for one yelaich constitutes one run of a Monte Carlo
simulation; 1000 runs are performed for each coatibn of MTTF and MTTR which
allows the long-term effect of these reliabilityrpaeters to be investigated; numerous
combinations of these are considered to explordartipact of missing data on energy loss
estimation accuracy. The results of these simulatiare shown in Tables 3 and 4.
Unavailability J) — in terms of MTTF and MTTR — is given in (1).

_ MTTR
MTTF+ MTTR

(1)

Time to failure TTF) and time to repair TR for the Monte Carlo simulations are
considered to follow exponential distribution witmean valuesMTTF and MTTR
respectively.

TTF(X) =—-MTTFOn( 3 (2

TTR(Y) =—- MTTRIn( ¥ (3)

17
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wherex andy are two random numbers (0O, 1).

It is clear from Tables 3 and 4 that the greateraimount of unavailable data, the greater the
underestimation of losses (represented by mean)ttenéssociated uncertainty (expressed
through standard deviation). The underestimation le$ses occurs because linear
interpolation decreases the variability of the orédtime series. Moreover, MTTR is shown
to have a more substantial effect on the uncegtahtoss estimation than MTTF, i.e. for the

same unavailability, the case with the higher MTTé&ds to a higher standard deviation.

—

Feeder Loading

(@)

Measurement availability
Loading (with interpolation)
— — —Loading (original)

0 200 400 600

Time Step

Figure 14: lllustrative part of a simulation (25 ¢g) carried out to investigate the effect of datevailability on energy
losses. Each time step is 30 minutes.

800 1000 1200

Table 3: Results of 1000 Monte Carlo simulations veith MTTF of 1 week and varying MTTR. Mean and stahda
deviation refer to total energy losses in MWh forear; losses with no missing data are 493.89 MWh.

MTTR 6 hours | 12 hours 1 day 2 days 3 days
U (proportion of unavailable data) 3.45% 6.67% 025 | 22.22% 30.00%
Mean (MWh) 493.44 493.05 492.5( 491.55 490.85
Error (MWh) 0.45 0.84 1.39 2.34 3.54
Error (%) 0.09 0.17 0.28 0.47 0.72
St. dev. 0.70 1.36 2.54 5.20 6.89

18
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Table 4: Results of 1000 Monte Carlo simulations wittMTTR of 1 day and varying MTTF.

MTTF 1 month| 2 weeks| 10 days| 1 week| 3days| 1 day

U (Proportion of unavailable data) 3.23% 6.67% 909 12.50%]| 25.00%| 50.00%
Mean (MWh) 493.51| 493.12 492.82 49250 490|87 4B8.2
Error (MWh) 0.38 0.77 1.07 1.39 3.02 5.61
Error (%) 0.08 0.16 0.22 0.28 0.61 1.14
St. dev. 1.30 1.93 2.30 2.54 3.62 6.15

Figure 15 shows the relationship between MTTR #&medaverage loss estimation error for a

fixed MTTF of 1 week. The estimation error increaieearly with the MTTR of the sensor.

The adjusted Rvalue of the fit — an indication of how well thi¢ fepresents the data — is

0.9953 against a maximum value of 1.
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Figure 15: The relationship between MTTR and IstBr&tion error with a fixed MTTF of 1 week

60

70

Figure 16 shows how the estimation error varied waéispect to the MTTF; in this case the

MTTR was fixed at 1 day. In this figure, the trefoflows a rational relationship, with very

low MTTF values having a comparatively high impantestimation error, but sensor failures

with a MTTF of more than 14 days providing litteprovement. The adjusted® Rf this

19
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fitting is 0.9988, again implying the fit is an exnely good representation of the

relationship.
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Figure 16: The relationship between estimation eand MTTF with a fixed MTTR value of 1 day

4.2.2 Conclusions

The impact of data unavailability on estimatioreaergy losses was examined in this section
and was found that the error is relatively low camggl to the amount of missing data — 45
(equivalent full) days with no available data ledat maximum error of 1.5%. More missing
data resulted in greater underestimation of enéngges and higher uncertainty as well.
Finally, extended periods of missing values comgbate more frequent (but shorter)
unavailability periods (with the same ratio of dahle data) play a more important role in

loss estimation in terms of uncertainty. The erestimation increased linearly with the
duration of the periods of missing data (represebtea MTTR value), and had a ration}lcal (

type) relationship with the spacing between perioflsmissing data, represented by the
MTTF. The adjusted Rvalue for both of these relationships was grett@n 0.99.

4.3 Uncertainty of load and network parameters

This section analyses the effect of the uncertaiagarding load and network parameters;

random and systematic errors are considered, anelation is examined as well.
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4.3.1 Load uncertainty

Load uncertainty is analysed by employing Montel@aimulation; equation (4) shows how
the real power of load poirkk for simulationi at timet is derived. Random errors are
considered by modifying the standard deviatiendf normally distributed random numbers

(r), and systematic errors by adjusting their mean (
Ry (1) = D(t) (& [+ (4,0)) (4)

whereP, (1) is the original observed power at load pdifior simulationi at timet; D(t) is the
demand of the corresponding feedaris the ratio of the peak demand of the load pant t
the sum of peak demands of all load points of deelér; and,(«,0) is the value of a normally

distributed random number with meamnd standard deviatian at simulation.

Figure 17 and Figure 18 present the demand qusuittite the probability of demand at each
time step) of 100 simulations of (4) for load pdanof Bowling Green Court feeder of Haxby
Road network, which is used for the analysis is gection. Figure 17 correspondsute O
ando = 0.1, whilex = 0.1 ands = 0.1 have been used for Figure 18. In the foriigeire the
simulated profiles vary around the original loadmgfile, whereas in the latter figure, the
simulated time series are noticeably shifted uis; §hbecausg has a non-zero value, which

represents a systematic error.
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Figure 17: Demand quantiles of the load profildadd point 3 of Bowling Green Court feeder (100 satiohs) using: =
0 ando = 0.1 for the normally distributed random numberiginal load profile in black.
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Figure 18: Demand quantiles of the load profildadd point 3 of Bowling Green Court feeder (100 satiohs) using: =
0.1 ands = 0.1 for the normally distributed random numberiginal load profile in black.

The mean value of energy losses for the cases glfmvéhe whole network) — having run
100 Monte Carlo simulations for each one — are 486/Wh (@ = 0,6 = 0.1) and 602.62
MWh (u = 0.1,6 = 0.1), as shown in Figure 19. The energy losseesponding ta = 0.1
and ¢ = 0, i.e. considering only systematic error, af®.6 MWh; this means that the
existence of systematic error is more significaaintthat of a random one. The existence of a
random error adds some variability around the palgiime series (see Figure 17) and can be
used to reflect the stochasticity of load duringmpion (e.g. [4]); this variability increases
(the estimation of) losses compared to the case rtbglects uncertainty. However, this
increase is lower than that of a systematic efamrwhich the whole time series is shifted,
and therefore the losses are increased to a grestent. Figure 19 presents a sensitivity
analysis of load uncertainty (in terms of randond agstematic error) on estimated energy
losses for a year for the whole network; this canubed to assess losses at different levels

(and combinations) of demand uncertainty.

22



Electrical Losses Newcastle
Data Analysis + University

Energy Losses (Mean Value) (MWh)

0.1

0.06

0.1 0.04

0.02
Standard deviation parameter (c) 0 0 Mean value parameter ()

Figure 19: Surface plot of mean energy losses fififerént combinations of random and systematic msirbase caseu(= 0,
o = 0) energy losses = 493.89 MWh.

4.3.2 Measurement Accuracy on Real Networks

The potential measurement errors encountered onnetaorks are a compound value

encompassing the error from several discrete psesesamely:

1. Current Transformers (CTs) and Voltage TransfornfeiBs) are used to transform
the voltage and current on the real network to lowedues which can be safely
measured by a transducer. These devices havenamiath is guaranteed to a certain
accuracy depending on theccuracy classof the CT or VT. In the majority of
installations, the CTs and VTs have accuracy clags], which means the ratio is
accurate to +1%; a systematic error of up to 1% lmamntroduced. The accuracy of
the CT is also affected by its power factor anddear which can lead to a random
error of up to £1%.

2. A transducer on the secondary coil of the CTs afid ¥ used to measure the current
or voltage and pass this data onto a relay. Theyselised by Northern Powergrid’s

RTUs which provide data to Pi have a current mesamsant error of 1-2%.
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3. The measurement from the CTs and VTs are thendagleto represent the real
quantity.
4. This scaled analogue measurement is then convertad7-bit digital signal — this

introduces a quantization error. Assuming the &igihal is used to represent a value

from 0-150% of the transformer rating, this wiltnroduce an error 01f752—0 =1.17%

Without full knowledge of the exact natures of #ie errors taking place, a reasonable
approximation to the sensor errors in the realesystvould be a systematic error of 1% -
arising from the CT — and a random error of 4.2%ombining the transducer, scaling, and
quantization errors. This corresponds to an unterason of losses by around 10

MWh/year for the study network, or around 2%.

4.3.3 Network parameter uncertainty

This subsection deals with the uncertainty of nekw@arameters (resistances and
reactances). The uncertainty is introduced in #mesway as in the previous section (see (4))
and 100 Monte Carlo simulations are carried owntthe mean and the standard deviation of
total annual energy losses are calculated.

R, = R W+ r(u,0)),

X, =X @+ru,0)) ©)

whereR;, X;; are the resistance and reactance of braf@hsimulationi, respectivelyR, X
are the original resistance and reactance of brgnespectively; and(«,0), r'(u,0) are the
values of two normally distributed random numbeithwnean: and standard deviatian at

simulationi.

Figure 20 and Figure 21 show the mean value anadatd deviation of energy losses,
respectively, for different combinations of netwgkrameter uncertainty, in terms of random
and systematic error. It can be seen that the malale of energy losses depends only on the
value of systematic error (see Figure 20), anddiamdard deviation of energy losses is
influenced only by the random error (see Figure 21)
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Figure 20: Sensitivity analysis of network parametecertainty (random and systematic error) on treamvalue of energy
losses.
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Figure 21: Sensitivity analysis of network parametecertainty (random and systematic error) on ttesdard deviation of
energy losses.

Figure 22 illustrates the probability distributiohenergy losses for a specific combination of
systematic and random errors, namekly O ando = 0.3. The mean value of energy losses is

very close to the base case value (i.e. 493.89 MWAvause of the zero systematic error; the
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standard deviation of energy losses is 34.81 MWhidlw corresponds to 7% of the mean

value), which is low compared to the magnitudehefinput random error.

mean = 498.34
std = 34.81
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Figure 22: Probability distribution of energy losstoru = 0 ando = 0.3.
These results suggest that a systematic error ennétwork parameters will lead to a
significant over or under estimation, while a ramderror in network parameter values will
affect the range of values that the true value h&f kbsses could take. Given that the
parameters studied are affected by drivers whialidcaffect all conductors in a given area
(for example, air temperature and wind speed affgabtverhead conductor temperature), a

systematic set of network parameter errors is ntkely to occur.

4.3.4 Load correlation

The loads in a given distribution network will biteated by many of the same factors — for
example low temperatures, or sunset — but the etdemhich this is true will vary from case
to case. For example, a feeder with a significamviant of industrial and commercial demand
will behave very differently to one with only dontiesusers. The extent to which the
demands at two given load points are driven bystmae external factors can be modelled by
setting the correlation between different loadsd ats impact on network losses is

investigated in this section.

The correlation — with a correlation coefficientespied for each simulation — between the

demands were created by using correlated stringgse@fido random numbers as inputs into
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the model for the uncertain load described in secfi.3.1. An example of how the magnitude
and correlation of these values affected the denmanfiles are shown in Figure 24 and
Figure 25, with the original data provided in Fig&3, for reference. Note that a correlation
coefficient closer to unity indicates a strongemrelation.
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Figure 23: Original load profiles of load pointsaéhd 3 of Bowling Green Court feeder for a single.day
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Figure 24: Synthesized load profiles of load poidtand 3 of Bowling Green Court feeder, using 0, ¢ = 0.1, and zero
correlation.
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Figure 25: Synthesized load profiles of load poiatand 3 of Bowling Green Court feeder, using 0, ¢ = 0.1, and a
correlation coefficient of 0.95.
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Figure 26: Surface plot of mean energy losses fliergént combinations of random and systematic mrr@orrelation
coefficient = 0.6).

The resulting impact on loss estimation is shownFigure 26 and Figure 27, which

correspond to correlations between all the loadntgoion the feeder of 0.6 and 0.8
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respectively. These can also be compared to Fit@irevhich shows the results of the same

analysis with zero correlation between the demands.
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Figure 27: Surface plot of mean energy losses ftier@nt combinations of random and systematic mrr@orrelation
coefficient = 0.8).

The results show that the correlated results gigkdr losses than if we assume the demands
to be independent — this is because it is likelgt tmore peaks will occur concurrently,
leading to higher overall losses as a result oflthde heating effect. What is less clear is the
specific relationship between the correlation anel lbsses, since in some conditions, the
highest correlation (0.8) actually yielded lowesdes than the simulations with a correlation
of 0.6. A possible explanation for this is that,tle correlation increases, the peaks start to
occur simultaneously, which leads to higher loskesgjever, as the correlation becomes very
high the level of variability — which has been clgdinked with higher losses — in the

networks begins to fall, which causes losses tafaivell.

4.3.5 Conclusions

Uncertainty in demand observations leads to an restiemation of network losses in most
cases; if there is a systematic error in the denmedsurement, this has a more significant

impact, though this could be more easily corre¢tedugh recalibration of the equipment.
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The error arising from a random error was lessisagmt, but is also harder to eliminate.
Correlation between demand groups will lead to raareiase in the losses overall, but the

exact nature of this relationship will require gt investigation.

5 Impact on Future Modelling

Future work within this project will focus on esttion and prediction of network losses in
present and future network scenarios. These estinsawill be based on data, with similar
characteristics as those explored in the sensitaviialyses in this report. The results clearly
show that if these effects are not included witlhi@ analysis then it is likely that the losses
will be, on average underestimated and will havieigher level of uncertainty — a given

observation could indicate a wider range of truees.

With further analysis, a set of adjustment factordables could be created, which would
allow an engineer to easily include the impacthaf tlata errors into their calculations when
estimating network losses. These tables would recqamalysis of a greater variety of data

sets and networks, to investigate the variatictménsensitivities calculated in this report.

5.1 Losses in the DSO environment

The results presented in this report have someicatmns for a future DSO environment.
The key outcome from all of the results presensettiat higher variability within the network
demand leads to higher losses. In the DSO envirahraegreater number of assets acting in
new and unconventional ways could add to this bditg, and therefore lead to an increase
in losses for the same level of network utilisatiblowever, any DSO service which aims to
reduce the peak demand through load shifting we#@ldl to a reduction in variability, and
therefore a reduction in losses. It was also shtvan loss estimation is more accurate at
higher voltage levels for the same level of par@metcertainty, therefore DSO actions
which are targeted at reducing losses in the HVEIHY networks have a higher chance of
meeting their goals than those directed at the eWwvork.
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6 Conclusion

This report has investigated a number of factorschwlaffect the estimation of network

losses, specifically data resolution, missing datata uncertainty, and the correlation
between demand values. In many cases, relationdl@pseen these parameters and the
resulting error in loss estimation could be caltedavia sensitivity analysis, which can lead
to improved loss estimation methods. In other cases specific nature of the relationship

may require more detailed studies.

More specifically it was clearly shown that highariability within the network demand
leads to higher errors in loss estimation and $ipally underestimation. As load variability
is much lower in HV, because of the large numbesustomers supplied relative to LV, loss
estimation errors will tend to be lower. Reducihg tdata sampling rate leads to greater
underestimation of energy losses because of thdtiregs smoother profile, yielding the
conclusion that data sampling has a more profowhel to play in loss estimation in LV

networks.

Regarding the impact of data unavailability onrestion of energy losses, it was found that
the error is relatively low compared to the amoohmissing data. It was also shown that
extended periods of data unavailability had a nppodound effect in errors in loss estimation

than shorter but more frequent periods. The erstimation increased linearly with the
duration of the periods of missing data, and ha@tenal § type) relationship with the

spacing between periods of missing data. This sigdkat long periods of measuring device
failures will have a more significant impact in $osstimation than unavailability due to
shorter interruptions such as communication fagdurg every case more missing data

resulted in greater underestimation of energy msse

Uncertainty in load measurement was also showresalt in underestimation of network
losses for the majority of the cases explored. éyatic errors, which could for example
arise from calibration of measuring equipment anarsion of analogue into a digital values,
have a more significant impact in loss estimatiBandom errors were shown to be less

significant, but could be harder to eliminate. lasvalso found that correlation between
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demand groups will lead to an increase in the éssgnation overall, but the exact nature of

this relationship will require further investigatio

Besides the learnings derived from these obsemnstior a significant number of the studies
undertaken, generalizable mathematical relatiosshipre established between the various
parameters considered as variables in the analgsek,loss estimation. These could be
integrated with loss estimation models and othethoee for calculating losses in order to
produce more accurate results. The studies havepatssided clear evidence around the
importance of errors originating from measuring ipqent and quantified their effect on

network loss estimation for a variety of cases.
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