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1. Introduction

1.1.Project Context
Enhanced Understanding of Network Losses is a groyhich seeks to enable DNOs to
better understand, and make decisions pertaininpéounavoidable losses which take place
in their networks. The project is broken down ifite@ work packages. This report describes

the activities completed in, and learning arisirgf, WPs 3-5.

In a previous report, WP1 reviewed the state ofatthén loss estimation and loss reduction
in both academic literature and industrial pragtidescussing methods for resolving the
variability of demand; estimating the impact of learbon technologies, including harmonic
currents; the impact of load imbalance; methods dstimating the impedance of Low
Voltage networks; and assessing the impact of nmeasnt error and data granularity on the
accuracy of loss estimation. The key findings hagen summarised in four categories i.e.
the impact of present and future network scenanidsiding the variability of demand and
generation, the impact of Smart and non-Smart Taolgy, the impact of measurement
errors, and the impact of measuring at multipleregation levels. In a subsequent report and
paper, we revealed the effects of demand growtlogses and their estimation in traditional

networks.

In WP2, we investigated the value of data in undeding and quantifying losses; thus
focusing on three of the four categories identitodve. This was carried out in two stages:
first gathering and analysing network data fromtiplé sources, including SCADA, project
data, representative profiles, and forecasted datal secondly performing sensitivity
analyses using a first iteration of our modellingniework, in order to capture:

- the value of data, including the amount, samplatg,rquality, and accuracy
- the effects of network topology considering bothaur and rural configurations
- the effects of measurement location and the lelvéata aggregation

In this final report — which describes the workreat out in, and learning arising from,
WPs 3, 4, and 5 — we present a method developathdble estimation of losses in real
networks based on a subset of generic networks.tige investigate losses in a DSO
environment by considering how losses will be d@H#dcby a more active distribution
network. Finally, we introduce a hypothesis thatsks can be used by the DSO as an



adaptive market signal to influence the behaviduaative network users and deliver better

utilised and more reliable distribution networks.

1.2.Losses in a DSO Environment

Network losses are an unavoidable reality of trartsmy electricity from generators to
end-users via transmission and distribution netaohk previous reports we have discussed
how losses are not straightforward to calculateabse of their non-linear relationship with
electricity demand. We have also identified ungetyain the way network measurements
and models are used to estimate losses. In thistrepe seek to inform answers around two
overarching questions regarding the role of logsestive distribution networks managed by
a DSO as a neutral market facilitator:

1. What value does a DSO gain from an enhanced uladelisg of network losses, and
can this be used to influence the behaviour ofaatetwork users?
2. Based on findings around Question 1, to what exdbaould network losses, and the

resulting cost to end users, be included in DSGsa@tmaking?

As we identified in WP 1, in the current GB reguolgtenvironment DSOs are not directly
accountable for network losses as they are in nudhgr countries. Network losses are a
function of both the physical makeup of the netwarld the way in which the network is
used. The DSO is responsible for the former butehéitle control over the latter.
Simplistically speaking, network losses are equal%R, whereR is determined by the
network andl (which as a squared term will be more influentigl)determined by the
network users. This suggests that network users hagreater influence on network losses
than the DSO.

Network losses give a strong indication of how higawutilised a network is; if real-time

losses are included in network tariffs then this peovide a self-correcting incentive to move
network use to periods with lower use, and theeefltmwer losses. Consequently, our
hypothesis is this: While network losses are nsigaificant concern for a DSO, they can be
a powerful tool to influence the behaviour of aetivetwork users and thereby deliver more

affordable, sustainable, and reliable networksafbcustomers.

1.3.Distinctiveness of Approach and Key Findings

The adopted approach can help progress the undeirsga around network losses

considering existing academic literature and inglaigpractices in the following ways:



1. We introduce a distinctive method for estimatingtwoek losses based on
representative feeders. These are produced th@eglstering process that considers
nine distinctive feeder characteristics that caftuemce losses. The method offers
flexibility in terms of: a) the properties of thedders selected as inputs to the
clustering algorithm and b) the dependency of dpFasentative feeder to the one for
which the losses are estimated, based on critecia as the load distribution factor. In
this way losses can be estimated with a high degfreenfidence for any given set of
feeders and loading conditions. This can prove efuligool as both the network
configuration and loading patterns are likely t@mge as more flexibility and new
operations are introduced in distribution networks.

2. Our findings suggest that the introduction of im@o loss calculation and estimation
methods such as the one discussed in the prevamos p conjunction with the use
of more frequent and accurate network measuremeats,result in significantly
overall improved network operation. We will showathwhen a DNO specifically
targets loss reduction through active decision-mgkicustomer benefits, such as
network reliability are minimally affected, whileetwork efficiency is significantly
improved. At the same time, secondary benefitsh siscan improvement in voltage
profile have also been observed.

3. In a similar fashion, we will show that when netwoparticipants (e.g. those
dispatching distributed energy resources) are eaged to incorporate losses into
their decision-making this can result in increasetivork capacity for these types of
flexibility. We have observed a direct relationshietween the strength of this

incentive, signalled by the DNO and the risk ofwwmk constraint violations.

Up to now, and for HV and below, generic methodgehaeen used to calculate losses such
as generic LLFs as discussed in the Literature é&degection. These rely on formulas using
approximations, estimations of consumption baseduanterly data from customer bills, and
sporadic measurements. Even in the networks whaakufe bespoke loss analysis, this is
conducted after-the-fact, while our findings suggkere is significant value in the DSO
having visibility of losses in real time. Based thie analysis and results in this report, such
traditional approaches could significantly impede tability of DSOs to capture the

aforementioned benefits.



1.4.Report Structure

Section 2 describes a loss estimation method baisddeder clustering and transforming
loss calculations for representative feeders te ¢pgs estimates for real feeders. Sections 3
and 4 describe studies using methods for reducagtgyark losses which are fully controlled
by the DSO (network reconfiguration and soft opemts), whilst considering other benefits
these could provide to the system. Section 5 shmmsactive network users — in this case a
high penetration of aggregated electric vehiclesar affect network losses, and how the
DSO can take actions using losses as a marketl dignaduce costs for consumers and
improve the hosting capacity of the network. Sectto discusses the implications of the

findings, and section 6 provides conclusions ferréport and the project.

2. Feeder Clustering and Estimation of Losses

2.1.Introduction and Process Overview

Electrical losses in distribution networks (DNsg astimated rather than calculated for
several reasons, including the absence of metetiiegsize and number of these networks
[1], and the availability and accuracy of measudath. This section presents a method to
group similar feeders according to several preeeficharacteristics. This results in a specific
number of groups (which are called clusters), edakhich is represented by a representative
feeder. Power losses can then be calculated fdr egresentative feeder; subsequently
losses can be estimated for any feeder based ofoskeof the associated representative
feeder. Figure 1 gives an overview of the clusteprocess employed in this section.

In [1], the length and resistance of main feedet laterals, the number of laterals, as well
as the number of customers were employed as dhugteariables (or characteristics).
Indeed, these characteristics significantly affestivork losses. To improve this method, we
replaced number of customers with peak demandwandlso included load factor and load
distribution factor (LDF). Peak demand along wiltte tload factor represents much more
accurately the level of loading on the feeder than number of customers. LDF provides
information about the distance of the load pointenf the substation and is explained further

below.



» Define feeder characteristics

» Evaluate each characteristic for each
feeder

 Apply a clustering algorithm to the given
set of feeders

» Choose the optimal number of clusters

« Obtain the representative feeder for each |
cluster

* Calculate power losses for each
representative feeder

« Estimate losses for any feeder based on |
the associated representative feeder

(¢

Figure 1: Overview of the clustering process.

2.2.Network and Data
Haxby Road primary DN (see Figure 2) has been fmethis study, which is an 11 kV
urban network with seven feeders and 56 load paatsesponding to 11,740 customers.

Peak demand — based on Element Energy data [2¢acbf feeder is presented in Figure 3.



"f%?’
IR

?{fﬁ

i
U
|

43

1
T
e

!
4717

._.

=
|
|

——|] 49—:@1 71 =
e E }i—:—@{ 46 s—a] 75

Y2 Y3
HAXBY ROAD T3 (Y)

DAL S

76

ST
M

HAXBY ROAD T2 (R)
R1 R2 R3

97}@1—97—@{95 —@1 12 121

123
I_@__ __GD_I105 122
TR i

118

TTT
4

119
Figure 2: Haxby Road primary distribution network.

Peak Demand (MW)

Bumper Haxby Rd Bowling New Earswick Kirkham Hambleton Fossway
Castle Hospital Green Court Avenue Terrace

Figure 3: Peak demand of each feeder of the HaxdadRetwork.

2.3.Clustering Process
The input to the clustering algorithm was the sefesalers of Haxby Road DN and another
13 synthesized feeders based on the original dBegert judgment was employed to
populate the characteristics of the synthesizededieeensuring reasonable variation between
their characteristics within a pragmatic range. @ualysis showed that for the cases explored
raising the number of synthesized feeders furtheldgd no significant changes in the
clustering output. Nine characteristics were chabe influence the estimation of network

losses. These characteristics are listed below:



1) Length of main feeder

2) Length of laterals

3) Number of laterals

4) Resistance of main feeder

5) Resistance of laterals

6) Peak demand

7) Number of load points

8) Load factor

9) Load distribution factor (LDF)

LDF is defined as
LDF =—/—— (2.1)
PL

whereP; is the power of load point L; is the distance of load poinfrom the substatior?
is the total demand of the feeder; ahdis the length of the feeder. It expresses the
distribution of load across the feeder, with zeorresponding to a case which the total
demand of the feeder is located at the substatienL{ = O for each load poin); and one
corresponding to a case where the total demarmtadd at the endpoint of the feeder (ie.

=L for all load points).

The 20 (7 real + 13 synthesized) feeders with thkies for the nine aforementioned

characteristics are presented in Table I.

Table I: The set of feeders to which the clustedhygprithm will be applied.

Feeder Name- Lengt'h of| Length Number | Resistance| Resistance Peak Number Load

main of . Load L
Number feeder laterals of of main of laterals | Demand of Ipad Factor Distribution
/Feature (km) (km) laterals | feeder (pu) (pu) (MW) points Factor
Bump. Castle (1) 7.667 3.584 6 1.25 0.818 2.29%8 19 0.4848 0.7744
Haxby R. H. (2) 1.402 0 0 0.18 0 0.508| 3 0.52B5 0820
Bowl. Gr. Ct (3) 8.01 0.72 2 1.2 0.136 1.83638 9 864 0.7214
New Earswick (4) 6.057 1.262] 2 1.146 0.38 2.02p 10| 0.516 0.6137
Kirkham Ave. (5) 1.992 0.359 1 0.244 0.049 0.6959 4| 0.367 0.61
Hambl. Tce (6) 3.636 1.23 2 0.44 0.148 3.4062 9 4113 0.525
Fossway (7) 0.658 0 0 0.144 0 0.805y 2 0.3408 @.644
Synth. Feeders
(8) 1 0 0 0.16 0 0.45 3 0.32 0.65
(9) 2 0 0 0.35 0 1.75 5 0.45 0.55
(10) 1.5 0 0 0.28 0 0.75 4 0.34 0.62
(11) 0.7 0 0 0.1 0 0.7 2 0.53 0.7
(12) 2.5 0.4 1 0.375 0.08 0.9 5 0.47 0.71
(13) 5 0.7 2 0.8 0.15 1.5 8 0.5 0.65
(14) 7.5 1.2 3 0.975 0.252 2.4 12 0.54 0.68
(15) 8 1 3 1.36 0.19 1.98 11 0.37, 0.72
(16) 9 1.4 4 1.44 0.21 2.55 17 0.39 0.74
(17) 6 0.85 2 0.96 0.255 2.1 10 0.44 0.69
(18) 4.5 0.72 2 0.585 0.1656 1.8 10 0.34 0.6
(19) 3.5 0.6 2 0.42 0.15 1.2 8 0.52 0.54
(20) 2 0.33 1 0.38 0.0627 1.8 6 0.4§ 0.63

7



We have applied two clustering algorithms (whiclvéndeen widely used in the relevant
literature, e.g. [3, 4]) on the set of feeders thas presented above. Firstkymeans++ was
applied.k-means++ is an iterative algorithm which partitidhe observations (here feeders)
of an nxm (here 20x9) data matrix intk clusters, and returns cluster indices of each
observation based on a specific distance metriclid@an distance metric is the most
commonly used. The steps of the algorithm can badan [5]. Clustering evaluation is then
performed using the silhouette criterion [6]. Thiaauette value for each point is a measure
of how similar that point is to points in its owkuster, when compared to points in other

clusters. The silhouette val&efor theith point is defined as:

§=— (2:2)

whereg is the average distance from fitie point to the other points in the same clustdr, as
andb; is the minimum average distance from the point to points in a different cluster,

which is calculated for all clusters.

The silhouette value ranges from —1 to 1. A highosiette value indicates thais well
matched to its own cluster, and poorly matchedthermoclusters. If most points have a high
silhouette value (quantified using the mean silliieu@alue below), then the clustering
solution is appropriate. If many points have a lownegative silhouette value, then the
clustering solution might have too many or too felusters. We have used the mean
silhouette value to select the optimal number oétdrs as illustrated in Figure 4; we obtain

the best match when number of clusters = 3.
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Figure 4: Mean silhouette value criterion for ciustvaluation to optimize number of clusters foxbiaRoad;
k-means++ clustering algorithm has been applied.

Secondly, the agglomerative hierarchical clustee tf7] algorithm was applied. This
algorithm begins by considering each observatiora asngle cluster and combines two
clusters to create a larger one at each step. dleetion of the clusters to be combined is
determined by a distance metric. The algorithm stepen the desired number of clusters is
obtained. The steps of the algorithm are demorstrax the resultant dendrogram shown in
Figure 5. The process begins by considering 20lesifeggder clusters; the first step is to
combine feeders 7 and 11; the second step combiaad 8; and the process continues until
the desired number of clusters is acquired. Bagjbrghms resulted in the same clusters. We
have employed two clustering algorithms to validéibe results. However, the latter
algorithm provides the user with enhanced insighterms of linkages between feeders, i.e.
similarity between feeders, and one can see alhedions (i.e. steps of the algorithm) and
are able to decide a different grouping of the oleg@ns if they want. For three clusters, the

feeder groups are shown in blue, yellow, and réduro



Cluster 2

|Cluster 1

Cluster 3
|

711 2 810 51220 9 31415 417181319 6 1 16

Feeder Number
Figure 5: Dendrogram derived from the agglomerahtiiegarchical cluster tree algorithm for 7 Haxbyagand
another 13 synthesized feeders based on the draies.

2.4.Clustering Results
The results of the clustering process are showiralrle II. This table is essentially Table |

in blue, yellow, and red colour in order to linkchafeeder to a cluster — the colours

correspond to Figure 5.

Table II: Clustering results for the set of feedgltewn in Table I. Rows in blue correspond to @udt yellow
rows to Cluster 2; and red rows to Cluster 3.

Feeder Name- Lengt_h of | Length Number | Resistance| Resistance Peak Number Load
Number main of of of main of laterals Demand | of load Load Distribution
/Feature feeder laterals laterals | feeder (pu) (pu) (MW) points Factor Factor
(km) (km)
Bumper Castle (1) 7.667 3.585 6 1.25 0.818 2.2958 19 0.4848 0.7744
Haxby R. H. (2) 1.402 0 0 0.18 0 0.508 3 0.5285 0.9082
Bowl. Green Ct (3) 8.01 0.72 2 1.2 0.136 1.8363 9 0.4861 0.7214
New Earswick (4) 6.057 1.262 2 1.146 0.38 2.022 10 0.516 0.6137
Kirkham Ave. (5) 1.992 0.359 1 0.244 0.049 0.6959 4 0.367 0.61
Hambleton Tce (6) 3.636 1.23 2 0.44 0.148 3.4062 9 0.3417 0.525
Fossway (7) 0.658 0 0 0.144 0 0.8057 2 0.3408 0.6464
Synth.Feeders
(8) 1 0 0 0.16 0 0.45 3 0.32 0.65
(9) 2 0 0 0.35 0 1.75 5 0.45 0.55
(20) 1.5 0 0 0.28 0 0.75 4 0.34 0.62
(11) 0.7 0 0 0.1 0 0.7 2 0.53 0.7
(12) 2.5 0.4 1 0.375 0.08 0.9 5 0.47 0.71
(13) 5 0.7 2 0.8 0.15 1.5 8 0.5 0.65
(14) 7.5 1.2 3 0.975 0.252 2.4 12 0.54 0.68
(15) 8 1 3 1.36 0.19 1.98 11 0.37 0.72
(16) 9 1.4 4 1.44 0.21 2.55 17 0.39 0.74
a7) 6 0.85 2 0.96 0.255 2.1 10 0.48 0.69
(18) 4.5 0.72 2 0.585 0.1656 1.8 10 0.34 0.6
(19) 3.5 0.6 2 0.42 0.15 1.2 8 0.52 0.54
(20) 2 0.33 1 0.38 0.0627 1.8 6 0.48 0.63

It can be seen in figure 5 and table Il that Clu&eontains two of the longest feeders
which also have the greatest number of lateralwedsas number of load points. Cluster 1
consists of nine feeders which have lengths varfrog 3.5 — 8 km with mainly two laterals

10



and about 10 load points. Finally, Cluster 3 cosgsithe remaining nine feeders which are

0.7 — 2.5 km long with zero or one laterals, 2-#&d@oints, and 0.45-1.8 MW load.

Now, having clustered the feeders, we can produeedpresentative (or mean) feeder for
each cluster; we do so by calculating the meanevalueach characteristic for all feeders
within the cluster. The three representative feedee presented in Table Il below. Figure 6
illustrates the representative feeder of Clusteedch load point of which is 2.03/10 =
0.203MW; the resistance of each main feeder sedti@yual to 0.876/10 = 0.0876 pu; and
the resistance of each lateral is 0.203/2 = 0.109 pterals are evenly distributed across the
feeder, and one load point is assigned to eaclalatherwise, a lateral section would not
supply any load. The representative feeders fost€ta 2 and 3 can be constructed following

the same approach (seigure32 in the Appendix).

Table Ill: Representative feeders for each cludterthe aforementioned set of 20 feeders).

Length of Resistance of .

; Length of Number of ; Resistance of| Peak Demand Number of
Cluster mal(rllr;e)eder laterals (km) laterals malppLe)eder laterals (pu) (MW) load points
1 5.8 0.92 2 0.876 0.203 2.03 10
2 8.33 2.49 5 1.345 0.514 2.42 18
3 1.53 0.12 0 0.246 0.021 0.93 4

LP9 LP10
S/S
38 LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8

Figure 6: Representative feeder of Cluster 1.

2.5.Estimation of Losses Based on the Representatieddfe
Having obtained the representative feeder for eacdter, we can calculate losses for each
one. Based on the loss of the representative feagecan estimate losses for any feeder in

the cluster as shown below:

LMeeder = LO% rep.feede@ (2 : 3)

where

P 2 z R Li ,feeder
a= feeder i (2 4)
L R r] Z RLI ,rep.feede

rep.feede
i

11



whereP refers to powert. to distance; andis the load point index.

In equation (2.3)a is called modifier and is associated with the laad LDF of the feeder
and the corresponding values of the representétieder. Table IV presents the estimated
losses for the three real feeders of Haxby netwBdsults are satisfactory (<10% according
to [1]) for two of them, but for the third we hawe significant error. This feeder has
considerably higher (68% of the peak demand ofréipeesentative feeder) loading than the
rest of the feeders, which has as a result an adgeistment when the modifier is applied on
the loss of the representative feeder. The reprathem feeder does not capture each feeder of
the cluster perfectly. Hambleton Terrace feederoissidered an outlier because of its peak
demand; its other characteristics are in accordastethe rest of the feeders in the cluster.

Table IV: Feeder losses at peak demand for Cldster

Feeder Actual Losses (kW) Estimated Losses (kW) atRel Error (%)
Representative 15.09 - -
Bowling Green Court 30.12 31.05 3.09
New Earswick 20.13 18.89 6.16
Hambleton Terrace 24.71 40.11 62.32

2.6.Summary

This section presented a feeder clustering probassd on nine characteristics that are
considered relevant to losses. The proposed agpngageneric (i.e. does not depend on
specific networks) and fits with the literature.eT&im is to obtain a representative feeder for
each cluster; calculate losses for each one; agnl based on the loss of the representative
feeder, derive losses for any other feeder wittie tluster using the above-mentioned
modifier. We applied this method on a set of 2é&s, of which seven were real (Haxby
primary) and 13 synthesized. The proposed methadiysed a satisfactory estimation
(<10%) for two of the real feeders and yielded astterable error for the third one; the
loading of this feeder, however, was significaritigher (68%) than the rest of the feeders in
the cluster (outlier). The proposed method hasoperéd well on the aforementioned dataset;

in order to increase confidence, we propose itéiggijopn to a larger set of real feeders.

3. Network Reconfiguration

3.1.Introduction
This section examines network reconfiguration whaan be defined as changing the
topology of the network by opening and closing Iswitches [8]. The goal of network

reconfiguration is to find a radial configuratiomih minimizes a specific objective function

12



[9]. Losses, load balancing, voltage deviation, agldhbility have been commonly used as
objective functions in relevant studies [8]. Thiscon considers losses and reliability

optimization on one of the UK Generic DistributiSgstems (UKGDS).

3.2.Description of Case Study Network
The case study network is presented in Figure ig;iththe HV UG UKGDS [10]. The

high-level characteristics of the network are tistelow:

1) Urban area.

2) Short feeder length.

3) High customer density.

4) Underground (UG) construction.
5) Radial topology.

6) Small overall size.

The network consists of 76 buses (at 11 kV) anbdrdhches without considering normally
open points (NOPs). In terms of demand, there &réodd point which account for 24.27
MW and 4.85 MVAr. Minimum voltage is at bus 75 (gotht of feeder 8) equal to 0.948 pu
considering substation voltage 1.0 pu. Power lo$geshe original configuration are 431
KW.

00 N B B W o
PO
[ S—
O

I T T IT T

Figure 7: HV UG UKGDS [10].

As there were no NOPs in the original network, veastdered seven interconnections
between feeders, based on a typical urban NortRemergrid (NPg) distribution network

such as Haxby primary. The eight feeders of thevordt with bus numbers are shown in

13



Figure 8 and the considered NOPs in Table V. Féduh® NOPs (1-4) connect the feeder
endpoints, specifically: F1-F8, F2-F7, F3-F6, addA5. There are another two NOPs (5 and
7) which connect the midpoints of the longer fesdee. F5-F6 and F7-F8. The last NOP (6)
provides another interconnection between F6 andThRé. network with the normally open

points is illustrated in Figure 33 (in the Appendix
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Figure 8: All eight feeders of HV UG UKGDS with bnambers.

Table V: Considered NOPs for the HV UG UKGDS networ

NOP Interconnecting Interconnecting Branch
Buses Feeders Number

1 2-66 F1-F8 76

2 5-45 F2-F7 77

3 8-32 F3-F6 78

4 12-21 F4-F5 79

5 18-29 F5-F6 80

6 31-38 F6-F7 81

7 41-59 F7-F8 82

3.3.Minimum Loss Reconfiguration (Single-Time Step Siation)

The number of possible radial configurations foe thetwork above is ~5.78 million,
according to Kirchhoff's matrix-tree theorem [1Epme of them might violate thermal or
voltage limits. This demonstrates the need for rogt@tion problem formulation. We
formulate the problem based on [8]; the authorthis paper optimize network configuration
considering network losses and reliability (in terof expected customer interruption cost)

whilst accounting for asset condition and substateliability. In this report, we consider
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minimization of losses as the sole objective, anel solve the model using Genetic
Algorithm, which has been widely used in the retevderature (e.g. [12-14]). Power losses
for the original and optimal network configuratiofifustrated in Figure 33 and Figure 34 in
the Appendix) are shown in Table VI; there is axgigant reduction of ~40% in losses. Each
radial configuration can be represented in termmén branches; a necessary but not
sufficient condition is that the number of the ed$ranches should be equaNg- 1, where

N, is the number of buses of the network. In thisecstsidy, we have 75 branches of the
original network and 7 NOPs; therefore, we needranthes to be open. Branch 1-2

corresponds to branch number 2, branch 2-3 to hranmber 3, etc.

Table VI: Power losses for the original and optimeatwork configurations.

Configuration Open Branches Losses (kW)
Original 76, 77,78, 79, 80, 81, 82 431.0
Optimal 62, 42, 31, 79, 80, 81,59  259.7 (-40%)

After reconfiguration, the voltage profile of thetwork as well as the loading of each
feeder has been significantly improved. This isnanily because heavily loaded feeders can
transfer load to feeders which supply fewer loadhigoand are more lightly loaded. Load
balance between feeders improves losses and volfdge is illustrated in Figure 9 and
Figure 10. Feeder F5 (11 load points) does nostearany load to feeder F4 (5 load points)
because the main feeder sections of the latter hauesistance approximately 3.5 times
higher than that of the former. Consequently, feedel and F5 are balanced in terms of

losses in the original configuration, and load $fanbetween them is not required.
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Figure 9: Voltage profile for original and optimadtwork configurations for the HV UG UKGDS network.
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3.4.Reliability Reconfiguration
This section optimizes the configuration of thewwaek for reliability; System Average

Interruption Duration Indéx (SAIDI) is considered as the objective functiorhisTindex
accounts for both frequency and duration of fasgyand considers number of customers lost
rather than energy not supplied. The optimizatibthis index will therefore balance number
of customers between feeders. Intuitively speakthg, longer the feeder, the greater the
impact of each single feeder section failure, amenwit occurs, the greater the number of
disconnected customers. Whereas, when customebetiee distributed between the feeders,
then feeder failures affect a smaller part of tlealthy network, and fewer customers are
interrupted. If specific feeder sections are quemty less reliable, it may be optimal to

transfer customers away from these even if it tesnla less balanced network.

Based on [15, 16], we consider a switching timel®fmin (remote control) and a repair
time of 5 hours; a failure rate of 0.065 f/yr-km% EW / residential customer and 41.5 kW /
commercial customer have also been assumed (sée XAbin the Appendix for customer
types). The number of customers supplied by thisvork is 5,492. SAIDI reconfiguration

results are shown in Table VII.

Table VII: SAIDI for the original and optimal netwloconfigurations.

Configuration Open Branches SAIDI (hr/cust-yr)| CML" (min/100 cust- yr)
Original 76, 77,78, 79, 80, 81, 82 0.1628 97.68
Optimal 61, 42, 30, 21, 80, 81, 59 0.1249 (-23%) 74.94

*CML = Customer Minutes Lost.

1 SAIDI is the average outage duration for each cnstoserved and is calculated as the sum of all
customer interruption durations divided by the nenmtdf customers served
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3.5.Multi-Objective Reconfiguration
Having separately presented networks with minimisesses and minimised SAIDI

reconfiguration, we now formulate a multi-objecti@ptimization problem to consider both
objectives simultaneously. The output of this maddghe Pareto front which is illustrated in
Figure 11. Pareto optimality is a state where itmpossible to further improve one objective
function without deteriorating the other. In otheords, for each point on the Pareto front of
Figure 11, we can improve one objective functioftydry degrading the other [17]. When a
Pareto front is obtained, then the decision maker apply different weights (depending on
their preferences) on the objectives and selecbtieewith the best overall performance. In
this case study, we observe that we can get lowesalor both objectives simultaneously;
this demonstrates that the objectives do not coenpath other in this case study. Note that
power loss and SAIDI for the original configuratiare 431 kW and 0.1628 hr/cust- yr.

Pareto front
0.126

0.1258

0.1256

T

0.1254

0.1252

T
L 4

SAIDI (hr/cust.yr)

T
L 4

0.125

O' 1 248 | | | 1 | | | \‘
258 260 262 264 266 268 270 272 274 276

Losses (kW)
Figure 11: Pareto front for multi-objective netwadconfiguration considering power losses and SAIDI

3.6.Minimum Loss Reconfiguration (Multi-Time Step Siratibn)

So far, we have examined network reconfiguratianaf@ingle time step (i.e. finding the
optimal configuration for a specific loading conalit — usually at peak load). In this section,
we present a multi-time step analysis for the mimmloss reconfiguration problem. This
means that we optimize the configuration of thewvoek each time step (here one hour)
accounting for the variability of demand. Generalljulti-time step (here hourly)
reconfiguration provides improved results at thestcof performing multiple switching
actions to change between different network comfigons throughout the day. Demand
profiles for each customer type are taken from [(&&e Table XIV in the Appendix for

customer types). Power losses for each hour fofixayl original configuration; b) fixed
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optimal configuration (derived in Section 3.3 ammdresponds to the green configuration in
Table IX); and c) hourly optimal configuration, greesented in Figure 12. To further clarify,
configuration (a) refers to the original networkn@iguration (illustrated in Figure 33 in the
Appendix), i.e. with branches 2-66, 5-45, 8-32,212-18-29, 31-38, and 41-59 (which
correspond to the considered NOPSs) open. In tlsig,¢he original configuration is kept fixed
during the day and losses are calculated every lomnsidering this configuration.
Configuration (b) refers to the optimal configucati obtained in Section 3.3, which
corresponds to a specific loading condition ofrileéwvork given in [10]; this configuration is
illustrated in Figure 34 in the Appendix. Finallgonfiguration (c) is the optimal
configuration for each hour, i.e. the network cguafation given by the optimization
algorithm, which is run at each time step considgrvariable demand profiles. The
corresponding energy losses throughout the dagharen in Table VIII. Table IX shows the

hourly optimal configuration (case c) for each tistep. We observe the following:

1) Fixed optimal (b) and hourly optimal (c) both acl@eapproximately 40% reduction in
daily energy losses. The difference between (b)(ens negligible (0.33%).

2) There are only three different configurations f

3) or (c) (shown in different colours), which are atggte similar to each other; there are
2-3 different open branches between the differenfigurations.

4) Two of the NOPs (18-29 and 31-38) were not operdatedremained open for all 24
hours of the day.

5) Four open branches (including the two above-meatoNOPs) remained unchanged
throughout the day. This is indicative of the samtly between the different
configurations obtained by the optimization algamtfor each time step.

These findings suggest the use of fixed optimalfigaration (b) during the day, since
hourly optimal configuration (c) requires five capfration changes throughout the day (see
Table IX) and only offers an extra 0.33% improvemienlosses. In addition, fixed optimal

configuration (b) (shown in green in Table IX) istimnal for 15 out of the total 24 hours.
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Figure 12: Power losses for each hour for: a) fix@thinal, b) fixed optimal, and c) hourly optimal

Table VIII: Daily energy losses for: a) fixed otigil, b) fixed optimal, and c¢) hourly optimal confrgtions.

Configuration

Energy Losses (MWh)

Fixed Original (a)

3.996

Fixed Optimal (b)

2.4147 (-39.57%)

Hourly Optimal (c)

2.402 (-39.9%)

Table IX: Optimal configuration for each time stiep case c (hourly optimal configuration). Diffetesolours
are used to indicate different network configunasioThere are three different configurations thihaug the
day, and five changes between different configareti

Time Configuration

1 62 43 32 21 80 81 59
2 62 42 31 79 80 81 59
3 62 42 31 79 80 81 59
4 62 42 31 79 80 81 59
5 62 42 31 79 80 81 59
6 62 42 31 79 80 81 59
7 62 42 31 79 80 81 59
8 62 42 32 21 80 81 59
9 62 42 31 79 80 81 59
10 62 42 31 79 80 81 59
11 62 42 31 79 80 81 59
12 62 42 31 79 80 81 59
13 62 42 31 79 80 81 59
14 62 42 31 79 80 81 59
15 62 42 31 79 80 81 59
16 62 42 31 79 80 81 59
17 62 42 31 79 80 81 59
18 62 42 32 21 80 81 59
19 62 43 32 21 80 81 59
20 62 43 32 21 80 81 59
21 62 43 32 21 80 81 59
22 62 43 32 21 80 81 59
23 62 43 32 21 80 81 59
24 62 43 32 21 80 81 59
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3.7.Summary

The findings demonstrate that network reconfigoratcan significantly improve power
losses and reliability. Case study results showesbaction of approximately 40% in losses
and 23% in SAIDI. Multi-objective optimization inchted that both objectives can take very
high-quality values (i.e. very close to the singlgective optimal) simultaneously. This fact
shows that power losses and SAIDI — to a largenéxtenvork synergistically, i.e. when one
objective improves, the other improves as welltlfis case study). However, this depends on
customer types, demand profiles, and customerilalision between the feeders. Finally,
hourly network reconfiguration — compared to fixedtimal configuration — provides an

additional improvement of 0.33%, which can be cdesd negligible.

4. Soft Open Points

4.1.Introduction
Soft open points (SOPs) are power electronic dewdeich are used to interconnect two
(or more) feeders in place of normally open poifsise Figure 13) [19]. Two important

characteristics of SOPs are [20]:

1) The ability to continuously control active powepwl between the interconnected
feeders.

2) The capability to inject/absorb reactive power peledently at the AC terminal nodes.

These characteristics can significantly influenbe bptimal operation and planning of

modern distribution networks.

Q-1

HV/MV Feeder#1 DG LOAD

Feeder #2 LOAD DG e

0 S S N

Figure 13: Schematic of SOP installation [21].
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4.2.Case Study Network
The case study network consists of feeders F1 &8naf Fhe HV UG UKGDS (see Figure
8) connected via an SOP, and is presented in Fipfutgelow. The network supplies 28 load
points with a total active demand of 8.41 MW antb&l reactive demand equal to 1.68
MVAr. Power losses for the original configurationdathe optimal reconfiguration (without

SOPs) are provided in Table X for benchmarking pses.
P1, Q1

' |
1
l SOP

I T T T g

Figure 14: Case study network: F1 and F8 of theUH¥ UKGDS interconnected through an SOP.

Table X: Power losses for the original configuratand the optimal reconfiguration (for comparisomo-SOP).

Configuration Power Loss (kW)
Original 257
Optimal 133.9 (-47.9%)

4.3.SOP Model
According to [22], the power balance for a SOPdsalibed as

R+ AJP|+ AP0 @)
where P, P, are the active power injections at the endpoirftfeeders F1 and F8,
respectively; and, A, are the converter loss coefficients.

Equation (4.1) expresses the active power balarciheo device, as the active power
injections are not independent to each other.déliog is reduced on one feeder, then it will
be increased on the other. Conversely, reactiveepomwections are independent of each
other, i.e.Q., Q. independent. However, SOP capacity constraintaldhme satisfied at both
sides. This is expressed through (4.2) and (4.@)sullustrated in Figure 15.

JPlZ +Q72<S, 4.2
JPi+Qiss, (43)
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Figure 15: Operating region for Voltage Source Gater (VSC) based SOP iQ plane [23].

4.4.SOP Optimization
This section performs SOP optimization with the d@omminimize network losses. The
problem is mathematically formulated as a secowmi@rocone programming (SOCP) model,
which guarantees global optimality and computati@ifciency using commercial solvers,
such as Gurobi [24], MOSEK [25], and CPLEX [26].eTlollowing two subsections examine
the impact of: 1) SOP rating; and 2) SOP efficiermynetwork losses.

4.4.1. SOP Rating

The effect of SOP rating (varying from 1-3 MVA) oetwork losses is analysed in this
subsection. These ratings are generic for SOP$% kV1as the authors in [19]-[21] consider
SOP ratings from 0.5-3 MVA at voltage levels, ranggfrom 12.66-20 kV. SOP is assumed
to be lossless here, i&, = A, = 0. SOP optimization results are presented ineTxh The
lowest power loss (for a 3-MVA SOP) is 123.3 kW, igthcorresponds to a reduction of 52%
compared to the original configuration (257 kW)cé#én be seen that while for ratings of 1
MVA and 2 MVA, the SOP if fully utilized, for a retg of 3 MVA, the converters do not
operate at their rated capacity. This is becauseldhd transfer from the heavily loaded
feeder F8 to the lightly loaded feeder F1 has redch limit beyond which losses start to
increase. The load transfer is implemented thragtve power injection®, andP.. P, is a
positive injection (equivalent to generation) a #nd of feeder F&; is a negative injection
(equivalent to load) at the end of feeder F1. Tdative power injection®, andQ, are both
positive (equivalent to generation); SOPs can tnjecabsorb) reactive power independently
at both sides [20]. Reactive power primarily supgaroltage, but also losses because it

reduces the current that flows from the substatmough the feeders. Compared to optimal
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network reconfiguration (-47.9%), an SOP would aehilower power loss, if it had a rating

greater than approximately 2 MVA (-47.5%).

Table XI: SOP optimization results for various S@@Bng values4; = A, = 0 — lossless SOP).

Rating (MVA) Losses (kW) | -P, =P, (MW) Q. (MVAr) Q. (MVAr) S (MVA)
1 178.7 (-30.5%) 0.971 0.1453 0.2391 1
2 135.0 (-47.5%) 1.93 0.1544 0.5226 2
3 123.3 (-52%) 2.7472 0.1649 0.8297 2.87

Figure 16 illustrates the loss reduction versus $&iRg. As was mentioned earlier, there
is a point for the load transfer between the feedaeyond which losses no longer decrease.
This point is when there is load balance betweenféleders; the greater the imbalance, the
more SOP can contribute towards loss reduction.oBeéthis point, an imbalance would
occur again, but now the initially lightly loadededder would become more heavily loaded
(i.e. in this case study feeder F1 would becomeemueavily loaded than feeder F8).
Therefore optimization stops at this point, andslesduction reaches this plateau. This

finding can be generalized to any pair of feeders.
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Figure 16: Network loss reduction versus SOP rating

4.4.2. SOP Efficiency

The value of loss coefficients of power convertersraried to examine the impact on
network losses in this subsection. SOP rating isickered fixed at 2 MVA. Table XlIl shows
the corresponding results. Power losses increas (35 kW up to 150.8 kW) as the value
of loss coefficients rises (from zero to 10%). Ndiat while the active power injectidh
remains around a value very close to -2 MW (eqgen@io an additional load of 2 MW at the
end of feeder F1), the value of active power inggcP, keeps decreasing. This means that
load reduction at feeder F8 falls as loss coeffitsencrease, which causes network losses to

increase as well.
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Table XII: SOP optimization results for differerifieiencies (SOP rating fixed at 2 MVA).

A=A Losses (kW) P, (MW) Q. (MVAr) P, (MW) Q, (MVAr)

0 135.0 (-47.5%) -1.93 0.1544 1.93 0.5226
0.02 136.8 (-46.8% -1.9968 0.1125 1.9185 0.565
0.05 141.5 (-44.9% -1.9991 0.0605 1.8087 0.75

0.1 150.8 (-41.3% -1.999 0.0634 1.6355 0.8759
4.5.Summary

Section 4 presented Soft Open Points, their madglland optimization to minimize
network losses. A case study network of two intensxted feeders via an SOP was
considered. Power loss for the original networkfiguration was 257 kW, whereas for
optimal reconfiguration 133.9 kW, which correspomals reduction of 47.9%. Various SOP
rating and loss coefficients were used to study tingpact on network losses. A 1-MVA
SOP managed to reduce losses by 30.5%, while a B-@P achieved the maximum
reduction (52%) in this case study (considering 2ess coefficients). When SOP losses are
incorporated in the model, network loss reduct®lower; the increase in losses compared to
the lossless model can be up to 6% (considerimgsdoefficient per converter ranging from
zero to 10%). Finally, in terms of loss reducti®@)P (a maximum of 52% at 3 MVA) and
network reconfiguration (~48%) achieve comparabhaults, with SOP having slightly better

performance for a rating greater than 2 MVA.

5. Electric Vehicles (EVS)
5.1.Case Study

5.2.1. Network and Data
Feeder F8 of the HV UG UKGDS (see Figure 8) is usddis case study, and is illustrated
in Figure 17. This feeder supplies 25 load poinits & total active demand of 7.51 MW and
total reactive demand of 1.5 MVAr. If the substatioltage is 1.05 pu then the minimum
voltage is 1.0 pu. The thermal limit for main feedections is 8.86 MVA.
—o o P 0 o
T T T TT T T

Figure 17: Case study network. Feeder F8 of thd MB/UKGDS.

We consider multiple EVs — each with a maximum ghray / discharging power of 7 kW
and an energy capacity of 24 kWh — at every buthe@metwork, and with Vehicle to Grid

(V2G) chargers. EVs are assumed to be unavailatie 8am — 6pm because they are being
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used for commuting or other travel. The price peofised in this study is shown in Figure 18
[27] and the feeder demand without EVs is showhRigure 19.
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Figure 18: Price profile corresponding to a winkerekday taken from [27].
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Figure 19: Feeder demand without EVs.

5.2.2. Test Case 1 (No Thermal Limits)

The aim of this study is to find the maximum numbé&rEVs that can be hosted by a
distribution feeder. The first test case negleltsthermal limits of the lines, and considers
1,071 EVs evenly distributed along the feeder. Thisiber was chosen as a starting point for
our study to ensure that we will have a thermaitliiolation, if we ignore these constraints
in the optimization. The objective function whicktdrmines the charging schedules of the

EVs accounts for arbitrage profit only (in thisttease), i.e.

maxy" (P, €)= Py ¢) h ¢) (5.1)
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where P, Py, is the charging / discharging power of the EVs, gnis the price. The
resulting aggregated state of charge of the EV#lustrated in Figure 20. The EVs are
unavailable from 08:00 — 18:00, as they start gamgvork at 08:00 and return home at
18:00. The model accounts for the energy requioedetiver the transport (i.e., the vehicles
arrive home with much less energy than they setvattt). To maximize its profit, the

aggregator discharges any energy available in Yfefiom 18:00 onwards, as price peaks at

that time.
1 T T T T T T T T T T T
< >

—~ EVs unavailable
R 08¢ .
S
g 06f V2G 6-8 pm 7
&) .
5 0.4 Going to work / |
g I Returning home
& 0.2

0 1 1 1 1 1 1 I 1 1 — il

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (h)
Figure 20: EV State of Charge throughout the day.

Charging and discharging schedule of the EVs isvehio Figure 21; charging takes place
in the night when price is lowest, while dischaggoccurs from 18:00 — 20:00 when EVs are
available and price is highest. Optimization isfpened having the full price profile
available. This means that the optimizer will chotisese hours to charge, when price is the
lowest, although price differences are very snratly other charging profile would incur a
greater cost. This situation should not be confusél real-time control, where a signal
drives the EV power, in which case, it would beextpd to see significant changes in the EV
power as a result of considerable variations incthrgrol signal.
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Figure 21: Charging / discharging schedule of EMsédctive: arbitrage profit only; thermal limitsgiected).
Feeder demand in this test case is significanfferdint and exceeds the thermal limit — as
shown in Figure 22 — which demonstrates that Egrdtion can substantially influence
demand profile and impose heavy loading on a fe@deatifferent time of the day). This test

case is used as a starting point for our case stndyprovides the direction for the following

simulations.
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Figure 22: Feeder demand for Test Case 1 (with11ED#s; neglecting thermal limits; and arbitragefipranly).
The next subsection considers thermal limits andeshgates the impact of the

incorporating network losses into the aggregatdesision-making via a signal provided by
the DSO.

5.2.3. Test Case 2 (Thermal limits and Impact fdes)
This subsection observes thermal limits and exasnthe impact of including network

losses (by adding a weighted loss cost term) irregggor's objective function (equation

(5.2)).
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max | (Py, ¢)- Py ¢)) Cp ¢ )—w [Loss( Jp () (5.2)

Arbitrage Profit { ) Weighted Loss Cost ()

Our aim is to find the maximum number of EVs whidn be integrated in the network
without exceeding thermal limits. Increasing thenber of EVs, at some point, power flow
will reach its limit at least for one hour duriniget day; this number constitutes the hosting
capacity of EVs by the feeder. The number of E\& tan be hosted by the feeder — without
thermal limit violation and without considering netrk losses . = 0) in the decision-
making of the aggregator — is 803. Feeder demandlustrated in Figure 23 and the
associated EV power per bus is shown in FigureF2éder demand does not exceed the
thermal limit in this test case; however, feedexdiog is very close to its limit in the night
when EVs are scheduled to charge. In additionE¥llschedules are identical because they
all respond to the same price signal and the dbgd only to maximize the arbitrage profit
(see equation (5.1)). This simulation yields a munn voltage of 0.946 pu (considering
substation voltage = 1.05 pu). Daily energy losgqsal to 2.52 MWh, and cost of losses
(calculated by multiplying the losses by the magk#éte in each time step) is £142.

®
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Figure 23: Feeder loading with 803 EVs; considetimgrmal limits; and not incorporating network lessnto
the objective function, i.ev = 0.
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Figure 24: EV schedule (objective: arbitrage profity, i.e.w. = 0; thermal limits considered).

Next, we perform the same simulation, but with theorporation of loss cost into the
aggregator’s objective function (withh = 1). Charging of the EVs has now been distributed
more evenly over time during the night, which issed by the inclusion of the losses term in
the objective function (see (5.2)). This is illag&d in Figure 25. In the previous cases, the
EV charging / discharging schedule was driven obly energy price, which led to
simultaneous charging and discharging of the EVegtimize cost (maximize profit); this
means that all different charge and discharge lineSigure 24 are on top of each other,
appearing as single lines. Charge lines are noeloag top of each other in Figure 25, and
this is why we can see all these lines in differeokours. The avoidance of concurrent
charging of all EVs during the night has causedgaificant peak reduction, as shown in
Figure 26. Voltage has also seen a major improvénasnminimum value now is 1.014 pu
compared to 0.946 pu without considering netwossés . = 0). Energy loss is equal to
2.35 MWh (-6.75%), and cost of losses is £133.86%).
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Figure 25: EV schedule (objective: arbitrage prefibss cost, i.em = 1; thermal limits considered).
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Figure 26: Feeder loading with 803 EVs; considetimgrmal limits; and incorporating network lossetithe
objective function withw, = 1.
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Figure 27 compares feeder demand for various valfms, the greater the value of, the
better the management of charging the EVs duriagight, which results in lower peaks and

improved voltage.
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Figure 27: Feeder loading with 803 EVs; considetimgrmal limits; and incorporating network lossetithe
objective function withw, = 0, 0.5, and 1.

Incorporating a cost of losses signal from the D&O aggregator decision-making has led
to an improved management of the EV fleet in teosetwork utilization (lower peak and
voltage improvement), which implies that the feed@n accommodate an increased number
of EVs.

5.2.4. Test Case 3 (Thermal limits and Losses re&sed EV Hosting Capacity)

Having included loss cost in aggregator’s objectivgction withw, = 1, our aim is to find
the new maximum number of EVs that can be accomtadday the feeder, while satisfying
thermal and voltage limits. The maximum number o&fsEis now 1,165 (+45%); the
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associated feeder demand is illustrated in Fig8teVEnimum voltage is 1.01 pu (compared
to 0.946 pu withv, = 0 and 803 EVs). Energy loss is equal to 2.73 MW 3%), and cost
of losses is £151.85 (+6.9%). Figure 29, showsntlagimum number of EVs that can be
hosted by the feeder versws(the weighting factor for the cost of network lasgaid by the

aggregator).
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Figure 28: Feeder loading with 1,165 EVs; consitiethermal limits; and incorporating network lossge the
objective function withw, = 1.
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Figure 29: Maximum number of EVs that can be hobtethe feeder versug.

5.2.5. Uncertainty and Probability of Violation

So far, we have not considered uncertainty in #eestudies. To demonstrate the impact
of uncertainty, we run 100 Monte Carlo simulatiaig est Case 3 (with fixed EV schedules
— obtained by optimization) considering a demamttl@iding EVs) uncertainty of 10%
(normal distribution). The results of these simiolas are shown in Figure 30; it can be seen
that a thermal limit violation has a considerabtebability of occurrence. To evaluate the

probability of violation (PoV), we run 10,000 Mon@arlo simulations, and for this case (
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= 1), we obtain a PoV of 45.31%. PoV can be manéageatljustingy,; Table XIII shows the

PoV for variousw,.
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Figure 30: Impact of 10% demand (including EVs) entainty; feeder demand exceeds thermal limit waith
probability of 45.31%. Lines in different colourspresent different possible outcomes for feederamehat
midnight and at 05:00.

Table Xlll: PoV for various values ofy,

W, PoV
1.0 45.31%
1.1 10.67%
1.2 3.21%
1.3 0.1%
1.35 0%

As the value ofv, increases, demand peak is lowered (see Figurbetguse EV charging
is better distributed over time during the nigleg$-igure 26 at 00:00 — 06:00). This provides
additional headroom and thus reduces the risk @atrng the thermal limit. We have used

the term PoV to express this here.
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Consequently, incorporating loss cost (with an stdjple weightw,) in aggregator’s
objective function can not only increase the EVtimgscapacity of the feeder, but also

manage the risk of violating line thermal limits.

Finally, we illustrate in Figure 31 the resultirgetier demand (100 possible outcomes) for

w, = 1.35 which presents a lower peak and explaimzéno PoV obtained for this value.
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Figure 31: 100 possible outcomes of feeder dematid0% uncertainty (normal distribution — includiiEVs)
andw, = 1.35. Feeder demand does not exceed thermaj BoV = 0%. Lines in different colours represent
different possible outcomes for feeder demand.

5.3.Key Learning Points
* EVs have the potential to significantly affect netiwlosses, in addition to voltage
profiles, thermal limits etc.
* Single party decision making in a DNO/DSO world Icblead to inefficient
network utilization when considering EV actionsduaing / discharging).

 DNO/DSO signaling of losses into aggregator denisiaking can increase the EV

hosting capacity in a distribution network and reglaosts for customers.

6. Conclusions

Firstly, this report has presented a novel lossmeasion method, including feeder
clustering. Initial results have proven to be praing in terms of providing a generic loss
estimation tool, although additional further woskrequired to determine its usefulness in
assessing losses across a larger set of test kstwamd ultimately across all DNO/DSO

controlled networks.
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In addition to presenting a novel loss estimatiathmad, this report has delivered enhanced
understanding regarding network losses in thregndisareas, network reconfiguration, the

introduction of SOPs, and in terms of EV actionthwi a given network area.

Firstly, in terms of network reconfiguration, itdhhbeen shown for a representative network
case, that by optimising network configuration lfmss minimisation, around a 40% reduction
can be made against the original base case. T$u#t mhould, however, be taken in context.
A key factor when interpreting this result, is thatpresents an upper limit, where the
DNO/DSO has set loss reduction as its primary tai@karly DNO/DSOs have other roles
to play, not least in assisting to deliver the alldiow carbon agenda, a factor which could
indeed lead to an overall increase in network ks3dis result merely indicates that if
DNO/DSOs were sufficiently incentivised to includetwork losses in their active decision
making, they have the potential to make significaftects to overall system loss
minimisation. It should also be noted that whitstd reduction is in this scenario the primary
objective; it is not the only network parameter ethcan be affected. An additional benefit
was an observed improvement in feeder voltage Iprafvhilst there is an overall decrease in
voltage drop, the most significant result of thisfe improvement is in a tightening of the
overall voltage bandwidth, allowing for greater troh of upstream busbars and increased
potential in terms of overall Active Network Managent solutions, a factor which could
play a significant role in delivering the low carbtransition. It was also demonstrated that
there is strong synergy between reducing lossesnapicbving reliability, and that a network
optimised for low losses will be close to the samtvork optimised for reliability, and vice

versa.

The findings around network reconfiguration werenptemented by the introduction of
Soft Open Points (SOPs). Using an SOP to interatirme feeders has been shown to also
have a significant effect on loss reduction, offgrislightly more improvement than
reconfiguration if the SOP is adequately sized laasl high efficiency. Improvements in loss
reduction using SOPs has an upper limit, at whaihtdoad balance is achieved between the
two feeders. Beyond this point, increasing thengatf the SOP will have no effect in terms
of loss reduction, and as such it can be deterntimgtcthe greater the imbalance between the
two feeders, the more an SOP can contribute towasssreduction. Whilst it is potentially
unlikely that an SOP is installed purely for ressai loss reduction, such a device can

provide additional benefits to business activit&sch as providing flexible interconnection
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between network areas, enhancing security of supptyproviding novel connection

arrangements for increased embedded generation.

Finally, an example of decision-making incorporgtiasses within a future DSO scenario
has been explored based on EV charging and disoga@ygtions. . Here an external
aggregator is theorised to optimally control itsetl in terms of profit seeking and makes
these actions independent of cost-reflective loskasging within a DSO controlled network
area. In this case, due to these independent, indriven actions there is the potential to
significantly affect feeder loading, network theinlianits, voltage profiles, and network

losses.

This would mean that in this effectively ‘aggregatmly’ decision-making scenario, in
order to maintain safe overall network operatitwe, aggregator would need to receive some
form of signal from the DSO to simply reduce thentner of controllable vehicles in its fleet,
thus reducing thermal limit or voltage violationsjt resulting in a net decrease in carbon
reduction. The results in this report have shownvewer that if DNO/DSOs were to
incorporate a losses charge for active networksugeith an adjustable weight,) this can
increase the EV hosting capacity in a distributietwork. This case study showed an
increase of 45% (803 EV\® 1,165 EVs). Adjusting the weight allows for management of
the thermal limit violation risk. In our examplerdenstration case, a weight valuevwgpf= 1
results in a probability of violation (PoV) of 43.%, whilst increasing the weight valuevip

= 1.35 decreases the PoV value to 0%.

As a result of these findings, it could be exttaped that single party decision making in a
DNO/DSO world will lead to inefficient network utzlation when considering EV actions
(charging / discharging). This case study againfoeces the fact that whilst loss reduction
remains a primary objective, additional networkgmaeters are affected and often improved.
One aspect of Northern Powergrid’'s Customer-Ledrbistion System (CLDS) project aims
to explore links between the actions of system ettalders, independent, uncertain or
otherwise, and the necessary actions of the DS@rdserve system integrity. Defining the
required shape, scale, location and magnitudeoétbese DSO procured flexibility contracts
and the degree to which the actions of others efinatt similar benefits is a key aspect of the
research being undertaken. This project has shbainsignaling available network capacity
in the form of active losses charging offers a ptoé¢ mechanism by which the DSO could
increase overall system efficiency and maintaiegnty within the distribution system. Each
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of these three areas of investigation has shownatfNO/DSO has significant potential to

affect their networks in terms of reducing netwdokses. Clearly an effective charging

incentive will be required to motivate DNOs in teymof adopting these measures, however

the results shown in this report have highlighteal if losses are not taken into account in

future likely DSO scenarios, there is a high likeld that this will result in inefficient and

high cost utilization of distribution networks.
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8. Appendix
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Figure 32: Representative feeders of Clusters 23and
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Figure 34: Optimal network configuration for Seati®.3.

Table XIV: Customer types for the HV UG UKGDS.

Customer Type

Elexon Profile Clags

Load Points éBls

Residential

1

1, 3-6, 10, 12, 14, 17-19, 21, 23, 25-27, 32-38 40)
44-47, 50, 52, 54, 57-59, 61, 63-65, 68-69, 71733

Commercial

3

2,7-9, 11, 13, 15-16, 20, 22, 24, 28-31, 39, 41, 4

48-49, 51, 53, 55-56, 60, 62, 66-67, 70, 72
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