

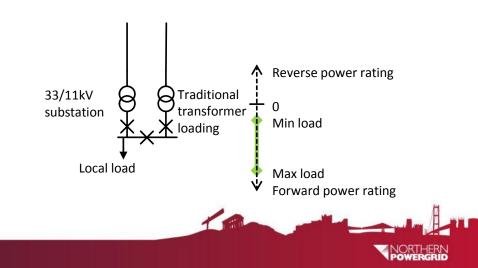
# Active Network Management Workshop

David van Kesteren

System Planning

# Topics

- What is ANM
- Why do we need it at Driffield
- How will it work
- When will it be delivered
- How much will it cost
- When and how will it be rolled out elsewhere





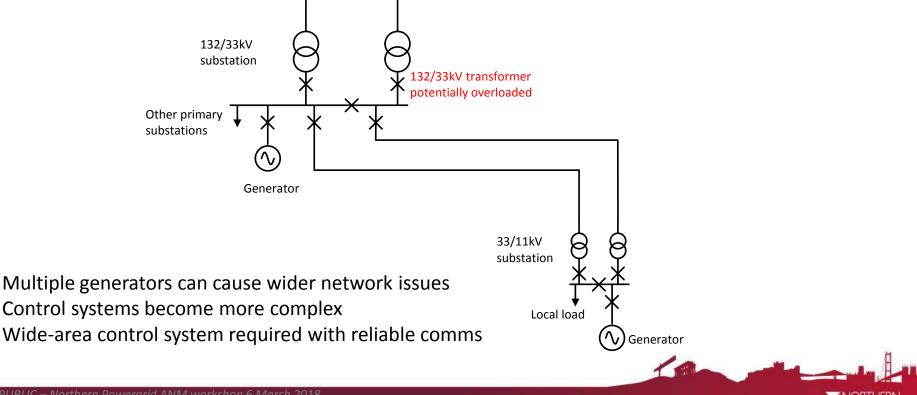

### Impact of connecting generation

#### • Key network drivers

- Develop an economic, efficient and coordinated network
- Operate equipment within its design capability



### Impact of connecting generation


33/11kV

substation

- Key network drivers
  - Develop an economic, efficient and coordinated network
  - Operate equipment within its design capability
- Potential frequency of overload driven by combination of demand and generation profiles
  - Many potential constraints occur infrequently
- Cost of reinforcing for infrequent constraints is uneconomic and inefficient for both the generator and the network operator
- A constrained connection, with lower capital cost, can be both economic and efficient

Simple local constraint signal can limit generator during outage conditions Potential overload with +gen Reverse power rating Min load with generator Transformer loading with generator Local load Max load Forward power rating Generato

### Impact of connecting generation



### Active Network Management as a solution

What is ANM? ANM constrains the generator at peak times to avoid overloading the network.

#### Pros

- Minimum demand only occurs for short periods in the year
- As network demand increases more generation can be turned on
- Unused contracted generation capacity can be utilised by other generators
- Lower cost of connection for generator and avoided reinforcement cost
- Potentially releases more capacity than can be economically achieved through conventional reinforcement



No absolute guarantee of level of network availability

Cons

Small-scale generation
(LV) may erode available headroom over time

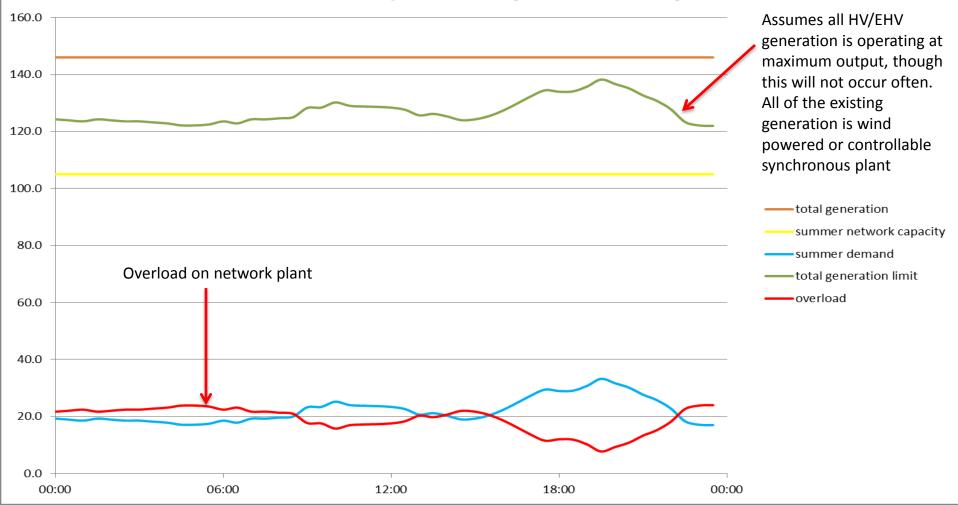


Levels of curtailment will be higher for later entrants



# Active Network Management at Driffield

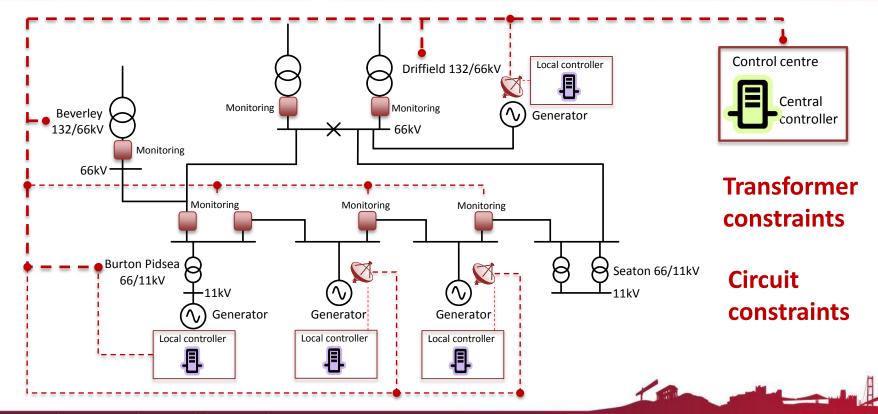
#### Ian Fletcher


#### **Smart Grid Implementation Unit**

# Driffield network issues

| Current contracted HV/EHV generation capacity     | 146MW |                                      |
|---------------------------------------------------|-------|--------------------------------------|
| Network export capacity                           | 105MW |                                      |
| Network minimum demand                            | 17MW  |                                      |
| Overall generation capacity at minimum demand     | 122MW | Conventional limit for generation    |
| Maximum demand                                    | 114MW | Additional headroom                  |
| Theoretical generation capacity at maximum demand | 219MW | can only be accessed by managing the |
|                                                   |       | output from generation               |

- Exceeding the conventional limit for connected generation may lead to network plant being overloaded
- Network minimum demand can reduce or increase over time


#### Plant overload example - existing & contracted generation



### **Conventional reinforcement solutions**

- Increase network export capacity via reinforcement
  - Increase capacity of existing transformers, or;
  - Install additional capacity
  - Minimum cost reinforcement solution ~£12m
  - Creates up to 30MW of capacity
- Minimum cost new connection solution (from an alternative network point) ~£6m
  - Dedicated long cable routes and/or transformer (sole user assets)
  - No cheap solutions
  - Cost is prohibitive to new entrants

### ANM building blocks



POWERGRID



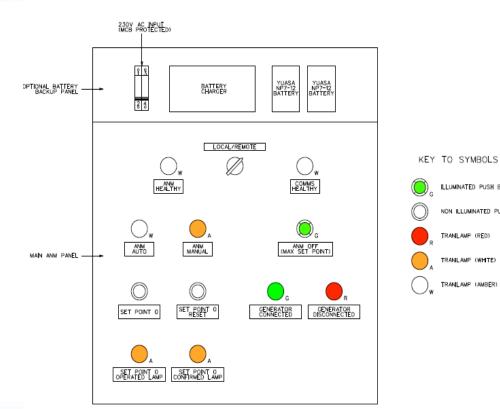
## **Delivery Programme**

### John Rowland

#### **Primary Engineering Projects**

# Delivery programme

| What?                                           | When?          |
|-------------------------------------------------|----------------|
| Develop concepts and principles                 | 2014-2015      |
| Policy development                              | 2015-2016      |
| Detailed technical specifications               | 2016           |
| Open market for customers to request ANM offers | April 2016     |
| Customer contracts in place                     | June 2017      |
| Select preferred ANM service provider           | June 2017      |
| Complete detailed design and build studies      | February 2018  |
| Construction commences                          | April 2018     |
| Scheme commissioning                            | November 2018  |
| Identify additional areas for ANM roll-out      | September 2018 |




# **Current challenges**

- Comms
- Functional Design Spec (FDS)
  - ANM wall box functionality
  - Cyber security
  - Design interface
    - Northern Powergrid Plant to ANM wall box
    - ANM wall box to generator controller
    - Install contract



## ANM wall box proposal



ILLUMINATED PUSH BUTTON (GREEN) NON ILLUMINATED PUSH BUTTON (GREEN) TRANILAMP (RED) TRANLAMP (WHITE)

TRANLAMP (AMBER)

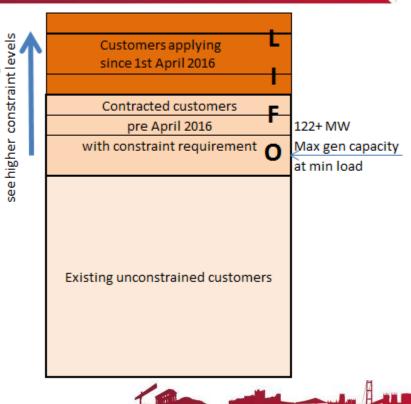




### **Commercial Considerations**



### **Requirements for ANM participation**


- Connections at LV are excluded but limited to 190kW (200kVA) on existing and new sites
- All new HV or EHV generation connections into the Driffield network must participate
- A customer requesting a generally more expensive conventional connection will not be required to participate in ANM
- Modifications to existing connections will often affect curtailment levels for existing ANM participants
- The following are examples of where a modified connection may be required to participate:
  - increase in export capacity;
  - increase in installed capacity (with or without a change to export capacity);
  - changing the type of generation (with or without a change to export capacity);
  - changing the operating regime (where a customer has an existing connection agreement for a specific operating regime)

18

### ANM application and queue position

Customers connecting later will

- Generation applications in the ANM area are automatically considered for ANM
- Customers can still request a conventional connection offer but we will not process this in parallel with an ANM offer
- Queue position is determined by date of receipt of a competent application, subject to the customer continuing to show adequate progression.
- Queue position is key to the level of curtailment applied to the generator
- General principle is Last In, First Out (LIFO)



NORTHE

# Cost structure for ANM elements

#### Capital costs:

- Shared costs for shared ANM components, on a per MW basis:
  - central controller, shared measurement points, shared comms routes
  - costs are re-apportioned as more customers utilise the equipment utilising the second comer methodology.
    - earlier connected customers may be eligible for rebates (for up to 10 years)
- Sole user costs:
  - local controller, local dedicated comms
  - any dedicated measurement points and associated comms routes
  - sole user elements could become shared if required for future customers

#### Annual costs:

- No additional site-specific charges,
  - operating costs are currently recovered via our general use of system charges



# Indicative costs for Driffield

- Shared asset costs are dependent on the project location and scope of works required.
  - Estimated to cost in the region of £900k
  - Costs shared by the agreed capacity on the respective assets being used
  - Utilises the same methodology as the second comer rule
- Sole asset costs are dependent on the location and scope of works required.
  - Estimated to be in the region of £100k to £150k
- General principles

- Offers and terms must comply with existing NPg financial policies
- Each customer required to take the liability of the ANM scheme as if they were a standalone customer
- Costs reconciled once the project has been delivered





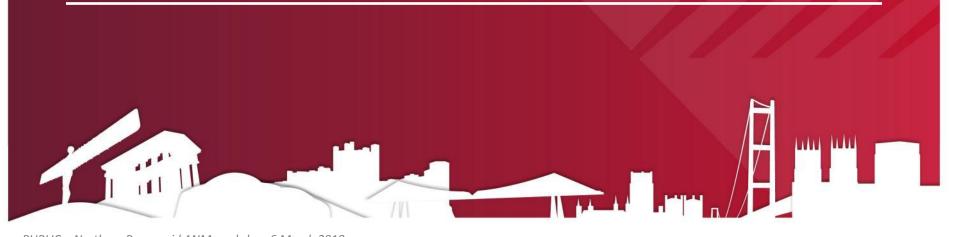
### Wider Roll-out



# Wider roll-out plans

| What?                                   | When?            |  |
|-----------------------------------------|------------------|--|
| Annual network loading assessment       | April – August   |  |
| Annual review of connections activity   | August           |  |
| Identify new areas for potential ANM    | September        |  |
| Assessment and selection of ANM areas   | October-December |  |
| Approval and advertisement of new areas | January 2019     |  |
| Issue ANM offers in new areas           | March 2019       |  |
| Re-commence annual cycle                | April 2019       |  |




# Selection process for new areas

- Identify networks with potential / actual loading issues
- Assess levels of customer connection request activity on each network
- Identify potential reinforcement costs for each network
- Identify potential cost of implementing ANM on each network
- Prioritise the networks that provide best overall benefit, taking into account all of the above





### Discussion

